论文标题

快速,强大的生物启发教学和重复导航

Fast and Robust Bio-inspired Teach and Repeat Navigation

论文作者

Dall'Osto, Dominic, Fischer, Tobias, Milford, Michael

论文摘要

完全自主的移动机器人具有许多潜在的应用程序,但是保证鲁棒的导航性能仍然是一个开放的研究问题。对于许多任务,例如重复的基础架构检查,物品交付或库存运输,路线重复功能就足够了,并且比完整的导航堆栈具有潜在的实用优势。以前的教学和重复研究主要通过使用复杂的,昂贵的传感器,主要在困难条件下实现了高性能,并且通常具有很高的计算要求。生物系统,例如小动物和昆虫,例如看到蚂蚁,提供了一个概念证明,即通过极有限的视觉系统和计算能力可以实现可靠和可推广的导航。在这项工作中,我们为教学和重复导航创建了一种新颖的异步公式,该公式完全利用了探视信息,该信息与校正信号相比,与通常所需的校正信号配对。该校正信号也与机器人的电动机控制脱钩,从而使其速率可以通过可用的计算能力调节。我们通过在两个不同的机器人Miro和Clearpath Jackal机器人上进行广泛的实验,在一系列具有挑战性的室内和室外环境中,通过两个不同的机器人机器人和Clearpath Jackal机器人评估了这种方法。当多个最先进的系统因低分辨率图像,不可靠的探光法或照明变化而导致的,同时需要大大降低计算,我们的方法将继续成功。我们也是第一次演示多功能的跨平台教学和重复,而无需更改参数,在这种情况下,我们将学习使用一个机器人浏览一条路线,并使用完全不同的机器人重复该路线。

Fully autonomous mobile robots have a multitude of potential applications, but guaranteeing robust navigation performance remains an open research problem. For many tasks such as repeated infrastructure inspection, item delivery, or inventory transport, a route repeating capability can be sufficient and offers potential practical advantages over a full navigation stack. Previous teach and repeat research has achieved high performance in difficult conditions predominantly by using sophisticated, expensive sensors, and has often had high computational requirements. Biological systems, such as small animals and insects like seeing ants, offer a proof of concept that robust and generalisable navigation can be achieved with extremely limited visual systems and computing power. In this work we create a novel asynchronous formulation for teach and repeat navigation that fully utilises odometry information, paired with a correction signal driven by much more computationally lightweight visual processing than is typically required. This correction signal is also decoupled from the robot's motor control, allowing its rate to be modulated by the available computing capacity. We evaluate this approach with extensive experimentation on two different robotic platforms, the Consequential Robotics Miro and the Clearpath Jackal robots, across navigation trials totalling more than 6000 metres in a range of challenging indoor and outdoor environments. Our approach continues to succeed when multiple state-of-the-art systems fail due to low resolution images, unreliable odometry, or lighting change, while requiring significantly less compute. We also - for the first time - demonstrate versatile cross-platform teach and repeat without changing parameters, in which we learn to navigate a route with one robot and repeat that route using a completely different robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源