论文标题

在低级正交子空间中的持续学习

Continual Learning in Low-rank Orthogonal Subspaces

论文作者

Chaudhry, Arslan, Khan, Naeemullah, Dokania, Puneet K., Torr, Philip H. S.

论文摘要

在持续学习(CL)中,学习者面临一系列任务,一个接一个地到达,目标是一旦连续学习经验完成,就要记住所有任务。 CL中的先前ART使用情节内存,参数正则化或可扩展的网络结构来减少任务之间的干扰,但最终,所有方法都在关节矢量空间中学习不同的任务。我们认为,这总是会导致不同任务之间的干扰。我们建议在不同(低级别)向量子空间中学习任务,这些任务彼此之间保持正交以最大程度地减少干扰。此外,为了使来自这些子空间正交的不同任务的梯度彼此之间,我们通过将网络培训作为优化问题来学习等轴测映射,这是在Stiefel歧管上的优化问题。为了我们的最好的理解,我们首次报告了经验重新播放基线的良好结果,无论是在不断学习的标准分类基准方面,有和没有记忆的基准。该代码可公开可用。

In continual learning (CL), a learner is faced with a sequence of tasks, arriving one after the other, and the goal is to remember all the tasks once the continual learning experience is finished. The prior art in CL uses episodic memory, parameter regularization or extensible network structures to reduce interference among tasks, but in the end, all the approaches learn different tasks in a joint vector space. We believe this invariably leads to interference among different tasks. We propose to learn tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Further, to keep the gradients of different tasks coming from these subspaces orthogonal to each other, we learn isometric mappings by posing network training as an optimization problem over the Stiefel manifold. To the best of our understanding, we report, for the first time, strong results over experience-replay baseline with and without memory on standard classification benchmarks in continual learning. The code is made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源