论文标题

具有任意签名的Lefschetz纤维

Lefschetz fibrations with arbitrary signature

论文作者

Baykur, R. Inanc, Hamada, Noriyuki

论文摘要

我们开发技术,以在2个球员上构建显式符号Lefschetz纤维,并使用任何规定的签名和任何自旋类型在16中排除。这解决了对具有正签名的这种纤维的长期猜想。作为应用,我们产生同型同构但不是与S^2 x s^2的连接总和的差异的4个manifolds,迄今为止已知最小的拓扑,以及更大的示例作为符号lefschetz纤维。

We develop techniques to construct explicit symplectic Lefschetz fibrations over the 2-sphere with any prescribed signature and any spin type when the signature is divisible by 16. This solves a long-standing conjecture on the existence of such fibrations with positive signature. As applications, we produce symplectic 4-manifolds that are homeomorphic but not diffeomorphic to connected sums of S^2 x S^2, with the smallest topology known to date, as well as larger examples as symplectic Lefschetz fibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源