论文标题
深度学习的镜头重力波的识别
Identification of Lensed Gravitational Waves with Deep Learning
论文作者
论文摘要
与光相似,重力波(GWS)可以镜头。这种镜头现象可以放大波,创建可观察到重复事件的多个图像,并将几个波形放在一起,从而在波浪上诱导潜在的可识别模式。特别是,当镜头很小时,$ \ lyssim 10^5 m_ \ odot $,它可以比典型的重力波信号长度短,而时间延迟的时间延迟,该图像延迟的时间延迟,该典型的引力波长长度合并在一起形成“跳动模式”。我们提出了一项利用深度学习来识别这种镜头签名的原则证明。我们将最先进的深度学习模型的卓越性带入识别从背景噪声的前景对象到识别噪声当前频谱图的镜头GW。我们假设镜头质量约为$ 10^3 m_ \ odot $ - $ 10^5 m_ \ odot $,它可以在两张镜头GWS的两张图像之间产生毫秒的时间延迟。我们讨论将镜头GW与未透镜的可行性以及估计物理和镜头参数的可行性。建议的方法可能是对我们没有准确波形模板的更复杂的镜头构型的研究。
Similar to light, gravitational waves (GWs) can be lensed. Such lensing phenomena can magnify the waves, create multiple images observable as repeated events, and superpose several waveforms together, inducing potentially discernible patterns on the waves. In particular, when the lens is small, $\lesssim 10^5 M_\odot$, it can produce lensed images with time delays shorter than the typical gravitational-wave signal length that conspire together to form ``beating patterns''. We present a proof-of-principle study utilizing deep learning for identification of such a lensing signature. We bring the excellence of state-of-the-art deep learning models at recognizing foreground objects from background noises to identifying lensed GWs from noise present spectrograms. We assume the lens mass is around $10^3 M_\odot$ -- $10^5 M_\odot$, which can produce the order of millisecond time delays between two images of lensed GWs. We discuss the feasibility of distinguishing lensed GWs from unlensed ones and estimating physical and lensing parameters. Suggested method may be of interest to the study of more complicated lensing configurations for which we do not have accurate waveform templates.