论文标题

ERDőS-KO-RADO型定理的逆问题,用于向量空间和排列的家族

Inverse problems of the Erdős-Ko-Rado type theorems for families of vector spaces and permutations

论文作者

Kong, Xiangliang, Xi, Yuanxiao, Qian, Bingchen, Ge, Gennian

论文摘要

自从著名的Erdős-Ko-Rado定理开始研究与亚群体的相交家族的研究以来,已经广泛研究了有关各种组合物体家族的相交性质的极端问题。其中特别关注了有关子集,向量空间和排列的家庭的研究。 最近,作者提出了一个针对子集家庭的新定量交集问题:对于$ \ Mathcal {f} \ subseteq {[n] \ select k} $,将其定义为\ emph {total Intersection number}为$ \ \ \ \ \ m natercal {i}(i}(i})(i}(i}) \ Mathcal {F}} | F_1 \ CAP F_2 | $。那么,当$ {[n] \ preace k k} $具有相同家庭规模的所有家庭中具有最大的总交点号时,$ \ mathcal {f} $的结构是什么?在\ cite {kg2020}中,作者研究了这个问题,并表征了最大化给定尺寸的总相交数量的家庭的极端结构。 在本文中,我们考虑了矢量空间和排列家庭的此问题的类似物。对于某些家庭规模的范围,我们为子空间的家庭和最大总交点数量的置换族提供结构性特征。在某种程度上,这些结果决定了$ | \ Mathcal {f} | $的某些某些值的最佳家族的唯一结构,并表征具有最大的总相交数量与相交之间的关系。此外,我们还显示了子空间家族和给定尺寸的排列家庭的总交点数的几个上限。

Ever since the famous Erdős-Ko-Rado theorem initiated the study of intersecting families of subsets, extremal problems regarding intersecting properties of families of various combinatorial objects have been extensively investigated. Among them, studies about families of subsets, vector spaces and permutations are of particular concerns. Recently, the authors proposed a new quantitative intersection problem for families of subsets: For $\mathcal{F}\subseteq {[n]\choose k}$, define its \emph{total intersection number} as $\mathcal{I}(\mathcal{F})=\sum_{F_1,F_2\in \mathcal{F}}|F_1\cap F_2|$. Then, what is the structure of $\mathcal{F}$ when it has the maximal total intersection number among all families in ${[n]\choose k}$ with the same family size? In \cite{KG2020}, the authors studied this problem and characterized extremal structures of families maximizing the total intersection number of given sizes. In this paper, we consider the analogues of this problem for families of vector spaces and permutations. For certain ranges of family size, we provide structural characterizations for both families of subspaces and families of permutations having maximal total intersection numbers. To some extent, these results determine the unique structure of the optimal family for some certain values of $|\mathcal{F}|$ and characterize the relation between having maximal total intersection number and being intersecting. Besides, we also show several upper bounds on the total intersection numbers for both families of subspaces and families of permutations of given sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源