论文标题
在太阳风中,动力学alfvén和离子伯恩斯坦模式的可能共存
Possible coexistence of kinetic Alfvén and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind
论文作者
论文摘要
我们通过磁层多尺度任务的测量值研究了亚离子尺度的压缩湍流。通过校准航天势获得的四面体构型和高时间分辨率密度数据,可以研究太阳风中的湍流密度波动及其在亚离子范围内的三维结构。通过将多点信号谐振技术应用于四点密度数据,可以在每个航天器频率下与最高能量密度相关的波形矢量。波动显示强的波形各向异性$ k _ {\ perp} \ gg k _ {\ Parallel} $,其中并行和垂直符号与平均磁场方向相对于平均和垂直符号。等离子体框架频率显示了两个种群,一个人群以下是质子回旋频率$ω<ω__{CI} $与动力学AlfvénWave(KAW)湍流一致的人群。第二个组件具有较高的频率$ω>ω__{CI} $与离子Bernstein Wave(IBW)湍流一致。或者,这些波动可能构成具有多种波波相互作用的KAW,导致等离子体框架频率的扩展。该波矢量区域中依赖量表的峰度显示出小尺度上的间歇性降低,这也可以通过波活性的存在来解释。我们的结果表明,小规模的湍流表现出动力学alfvén和可能的离子伯恩斯坦/磁波波的线性波性质。基于我们的结果,我们推测这些波在描述观察到的下离子尺度上观察到的间歇性降低中起作用。
We investigate compressive turbulence at sub-ion scales with measurements from the Magnetospheric MultiScale Mission. The tetrahedral configuration and high time resolution density data obtained by calibrating spacecraft potential allow an investigation of the turbulent density fluctuations in the solar wind and their three-dimensional structure in the sub-ion range. The wave-vector associated with the highest energy density at each spacecraft frequency is obtained by application of the Multi-point signal resonator technique to the four-point density data. The fluctuations show a strong wave-vector anisotropy $k_{\perp}\gg k_{\parallel}$ where the parallel and perpendicular symbols are with respect to the mean magnetic field direction. The plasma frame frequencies show two populations, one below the proton cyclotron frequency $ω<Ω_{ci}$ consistent with kinetic Alfvén wave (KAW) turbulence. The second component has higher frequencies $ω> Ω_{ci}$ consistent with ion Bernstein wave (IBW) turbulence. Alternatively, these fluctuations may constitute KAWs that have undergone multiple wave-wave interactions causing a broadening in the plasma frame frequencies. The scale-dependent kurtosis in this wave-vector region shows a reduction in intermittency at the small scales which can also be explained by the presence of wave activity. Our results suggest that small-scale turbulence exhibits linear-wave properties of kinetic Alfvén and possibly ion-Bernstein/magnetosonic waves. Based on our results, we speculate that these waves may play a role in describing the observed reduction in intermittency at sub ion scales.