论文标题
回答文本不同推理步骤的开放域问题
Answering Open-Domain Questions of Varying Reasoning Steps from Text
论文作者
论文摘要
我们开发了一个统一的系统,可以直接从文本开放域问题中回答,这些问题可能需要不同的检索步骤。我们采用单个多任务变压器模型来执行所有必要的子任务 - 检索支持事实,重新掌握它们并以迭代的方式预测所有检索文档的答案。我们避免对先前工作的关键假设,这些假设不能很好地转移到现实世界中,包括利用固定数量的回答步骤来回答每个问题所需的检索步骤或使用结构化的元数据(例如知识库或可用性有限的Web链接)。取而代之的是,我们设计了一个可以在任何文本集合上回答开放域问题的系统,而无需事先了解推理复杂性。为了模仿这种设置,我们通过将现有的一级和两步数据集与新的530个问题集合,构建一个名为BeerQa的新基准,这些基准需要三个Wikipedia页面来回答,并在此过程中统一了Wikipedia Corpora版本。我们表明,我们的模型在现有基准和这个新基准测试中都展示了竞争性能。我们在https://beerqa.github.io/上提供了新的基准测试。
We develop a unified system to answer directly from text open-domain questions that may require a varying number of retrieval steps. We employ a single multi-task transformer model to perform all the necessary subtasks -- retrieving supporting facts, reranking them, and predicting the answer from all retrieved documents -- in an iterative fashion. We avoid crucial assumptions of previous work that do not transfer well to real-world settings, including exploiting knowledge of the fixed number of retrieval steps required to answer each question or using structured metadata like knowledge bases or web links that have limited availability. Instead, we design a system that can answer open-domain questions on any text collection without prior knowledge of reasoning complexity. To emulate this setting, we construct a new benchmark, called BeerQA, by combining existing one- and two-step datasets with a new collection of 530 questions that require three Wikipedia pages to answer, unifying Wikipedia corpora versions in the process. We show that our model demonstrates competitive performance on both existing benchmarks and this new benchmark. We make the new benchmark available at https://beerqa.github.io/.