论文标题

贝叶斯神经网络分类器对乳房组织病理学图像量化的不确定性的解释和使用

Explanation and Use of Uncertainty Quantified by Bayesian Neural Network Classifiers for Breast Histopathology Images

论文作者

Thiagarajan, Ponkrshnan, Khairnar, Pushkar, Ghosh, Susanta

论文摘要

尽管有基于组织病理学图像的基于卷积神经网络(CNN)的分类模型的希望,但量化其不确定性是不可行的。此外,当数据偏差时,CNN可能会遭受过度拟合。我们表明,贝叶斯-CNN可以通过自动正规并量化不确定性来克服这些局限性。我们已经开发了一种新型技术来利用贝叶斯CNN提供的不确定性,从而显着提高了很大一部分测试数据的性能(在77%的测试数据上的准确性提高了6%)。此外,我们通过通过非线性维度降低技术将数据投射到低维空间中,为不确定性提供了一种新颖的解释。这种维度降低可以通过可视化来解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,通过将假阴性和假阳性分别减少11%和7.7%,贝叶斯-CNN的性能比最先进的转移学习CNN(TL-CNN)的表现要好得多。它仅以186万参数来实现这一性能,而TL-CNN则达到1.3433亿。此外,我们通过引入随机自适应激活函数来修改贝叶斯-CNN。在所有性能指标上,修改后的贝叶斯-CNN的性能略高于贝叶斯-CNN,并显着减少了假否定性和假阳性的数量(两者都会降低3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果在统计上具有显着意义。这项工作显示了贝叶斯-CNN对最先进的优势,解释并利用了组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用。

Despite the promise of Convolutional neural network (CNN) based classification models for histopathological images, it is infeasible to quantify its uncertainties. Moreover, CNNs may suffer from overfitting when the data is biased. We show that Bayesian-CNN can overcome these limitations by regularizing automatically and by quantifying the uncertainty. We have developed a novel technique to utilize the uncertainties provided by the Bayesian-CNN that significantly improves the performance on a large fraction of the test data (about 6% improvement in accuracy on 77% of test data). Further, we provide a novel explanation for the uncertainty by projecting the data into a low dimensional space through a nonlinear dimensionality reduction technique. This dimensionality reduction enables interpretation of the test data through visualization and reveals the structure of the data in a low dimensional feature space. We show that the Bayesian-CNN can perform much better than the state-of-the-art transfer learning CNN (TL-CNN) by reducing the false negative and false positive by 11% and 7.7% respectively for the present data set. It achieves this performance with only 1.86 million parameters as compared to 134.33 million for TL-CNN. Besides, we modify the Bayesian-CNN by introducing a stochastic adaptive activation function. The modified Bayesian-CNN performs slightly better than Bayesian-CNN on all performance metrics and significantly reduces the number of false negatives and false positives (3% reduction for both). We also show that these results are statistically significant by performing McNemar's statistical significance test. This work shows the advantages of Bayesian-CNN against the state-of-the-art, explains and utilizes the uncertainties for histopathological images. It should find applications in various medical image classifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源