论文标题

具有分解最小方程的对称对应关系

Symmetric correspondences with decomposable minimal equation

论文作者

Izadi, Elham, Lange, Herbert

论文摘要

我们研究对称对应关系,并在光滑的投影曲线$ c $上完全可分解的最小方程式。 $ c $的雅各比亚人则相应地分解。对于所有积极整数$ g $和$ \ ell $,我们提供一系列平滑曲线的示例$ c $属$ n^\ ell(g-1) +1 $,具有满足度量的最小值$ \ ell +1 $的对应方程,以使$ c $的jacobian $ c $至少具有$ 2^\ $ 2^\ \ eell $ nisogeny Components。

We study symmetric correspondences with completely decomposable minimal equation on smooth projective curves $C$. The Jacobian of $C$ then decomposes correspondingly. For all positive integers $g$ and $\ell$, we give series of examples of smooth curves $C$ of genus $n^\ell (g-1) +1$ with correspondences satisfying minimal equations of degree $\ell+1$ such that the Jacobian of $C$ has at least $2^\ell$ isogeny components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源