论文标题
具有分解最小方程的对称对应关系
Symmetric correspondences with decomposable minimal equation
论文作者
论文摘要
我们研究对称对应关系,并在光滑的投影曲线$ c $上完全可分解的最小方程式。 $ c $的雅各比亚人则相应地分解。对于所有积极整数$ g $和$ \ ell $,我们提供一系列平滑曲线的示例$ c $属$ n^\ ell(g-1) +1 $,具有满足度量的最小值$ \ ell +1 $的对应方程,以使$ c $的jacobian $ c $至少具有$ 2^\ $ 2^\ \ eell $ nisogeny Components。
We study symmetric correspondences with completely decomposable minimal equation on smooth projective curves $C$. The Jacobian of $C$ then decomposes correspondingly. For all positive integers $g$ and $\ell$, we give series of examples of smooth curves $C$ of genus $n^\ell (g-1) +1$ with correspondences satisfying minimal equations of degree $\ell+1$ such that the Jacobian of $C$ has at least $2^\ell$ isogeny components.