论文标题

ShiftAddnet:由硬件启发的深网络

ShiftAddNet: A Hardware-Inspired Deep Network

论文作者

You, Haoran, Chen, Xiaohan, Zhang, Yongan, Li, Chaojian, Li, Sicheng, Liu, Zihao, Wang, Zhangyang, Lin, Yingyan Celine

论文摘要

乘法(例如,卷积)可以说是现代深神经网络(DNNS)的基石。但是,密集的乘法会导致昂贵的资源成本,从而挑战了DNNS在资源约束的边缘设备上的部署,从而促进了几次无乘法深度网络的尝试。本文介绍了ShiftAddnet,其主要灵感来自节能硬件实现方面的共同实践,也就是说,可以通过加法和逻辑位移动来执行乘法。我们利用这一想法以这种方式明确参数化深网,从而产生了一种新型的深层网络,该网络仅涉及位移位和加性重量层。与标准DNN相比,这种硬件启发的ShiftAddnet立即导致节能推理和训练,而不会损害表达能力。两种互补的操作类型(位和添加)还可以对模型的学习能力进行更细粒度的控制,从而在准确性和(训练)效率之间进行更灵活的权衡,并提高了量化和修剪的鲁棒性。我们进行了广泛的实验和消融研究,所有这些都得到了基于FPGA的ShiftAddnet实施和能量测量的支持。与现有的DNN或其他无乘法模型相比,ShiftAddnet积极地降低了DNNS培训和推理的80%硬件定量能源成本,同时提供了可比或更好的精度。代码和预培训模型可在https://github.com/rice-eic/shiftaddnet上找到。

Multiplication (e.g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs). However, intensive multiplications cause expensive resource costs that challenge DNNs' deployment on resource-constrained edge devices, driving several attempts for multiplication-less deep networks. This paper presented ShiftAddNet, whose main inspiration is drawn from a common practice in energy-efficient hardware implementation, that is, multiplication can be instead performed with additions and logical bit-shifts. We leverage this idea to explicitly parameterize deep networks in this way, yielding a new type of deep network that involves only bit-shift and additive weight layers. This hardware-inspired ShiftAddNet immediately leads to both energy-efficient inference and training, without compromising the expressive capacity compared to standard DNNs. The two complementary operation types (bit-shift and add) additionally enable finer-grained control of the model's learning capacity, leading to more flexible trade-off between accuracy and (training) efficiency, as well as improved robustness to quantization and pruning. We conduct extensive experiments and ablation studies, all backed up by our FPGA-based ShiftAddNet implementation and energy measurements. Compared to existing DNNs or other multiplication-less models, ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies. Codes and pre-trained models are available at https://github.com/RICE-EIC/ShiftAddNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源