论文标题

向后差公式:次扩散方程的能量技术

Backward difference formula: The energy technique for subdiffusion equation

论文作者

Chen, Minghua, Yu, Fan, Zhou, Zhi

论文摘要

基于A稳定性和G稳定性的等效性,在[Akrivis,Chen,Yu,Zhou,Math中讨论了六步BDF方法的热量BDF方法的能量技术。 comp。,修订]。不幸的是,这种理论很难扩展时间分数PDE。在这项工作中,我们考虑了三种类型的次扩散模型,即单期,多项和分布式阶分数扩散方程。我们为$ k $ - 步骤向后差公式(bdf $ k $)生成的时间阶梯方案进行了新颖而简洁的稳定分析,以大致求解次扩散方程。分析主要依赖于能量技术,通过应用Grenander-Szegö定理。这种参数已被广泛用于确认各种$ a $稳定方案的稳定性(例如$ k = 1,2 $)。但是,由于$ a $稳定性损失,对于高阶BDF方法而言,这不是一件容易的事。本文的核心对象是填补此空白。

Based on the equivalence of A-stability and G-stability, the energy technique of the six-step BDF method for the heat equation has been discussed in [Akrivis, Chen, Yu, Zhou, Math. Comp., Revised]. Unfortunately, this theory is hard to extend the time-fractional PDEs. In this work, we consider three types of subdiffusion models, namely single-term, multi-term and distributed order fractional diffusion equations. We present a novel and concise stability analysis of time stepping schemes generated by $k$-step backward difference formula (BDF$k$), for approximately solving the subdiffusion equation. The analysis mainly relies on the energy technique by applying Grenander-Szegö theorem. This kind of argument has been widely used to confirm the stability of various $A$-stable schemes (e.g., $k=1,2$). However, it is not an easy task for the higher-order BDF methods, due to the loss the $A$-stability. The core object of this paper is to fill in this gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源