论文标题
分级模态依赖类型理论
Graded Modal Dependent Type Theory
论文作者
论文摘要
分级类型的理论是一种新兴范式,用于通过对程序属性进行参数化的,细粒度的分析来增强类型的推理能力。近年来,有许多这样的理论为一种类型的理论配备了定量数据流跟踪,通常是通过类似半的类似结构来提供对变量(通常称为“定量”或“系数”理论的分析)。我们介绍了分级的模态依赖类型理论(简称GRTT),该理论将相关类型理论与计算术语和类型之间的数据流进行了一般的,可参数化的分析。在这个理论中,可以在程序和类型中研究,限制和理由,使参数量化量和线性在依赖设置中捕获。我们提出了GRTT,研究其元看作用,并探讨了其在推理程序和研究其他类型理论方面的用途的各种案例研究。我们已经实施了该理论并突出了有趣的细节,包括显示等级在优化类型检查过程本身的应用。
Graded type theories are an emerging paradigm for augmenting the reasoning power of types with parameterizable, fine-grained analyses of program properties. There have been many such theories in recent years which equip a type theory with quantitative dataflow tracking, usually via a semiring-like structure which provides analysis on variables (often called `quantitative' or `coeffect' theories). We present Graded Modal Dependent Type Theory (GrTT for short), which equips a dependent type theory with a general, parameterizable analysis of the flow of data, both in and between computational terms and types. In this theory, it is possible to study, restrict, and reason about data use in programs and types, enabling, for example, parametric quantifiers and linearity to be captured in a dependent setting. We propose GrTT, study its metatheory, and explore various case studies of its use in reasoning about programs and studying other type theories. We have implemented the theory and highlight the interesting details, including showing an application of grading to optimising the type checking procedure itself.