论文标题

改进的素描算法用于编辑距离

An Improved Sketching Algorithm for Edit Distance

论文作者

Jin, Ce, Nelson, Jelani, Wu, Kewen

论文摘要

我们为编辑距离的同时草图复杂性提供了改进的上限。考虑两个各方,带有输入$ x \inς^n $的爱丽丝和带有输入$ y \inς^n $的鲍勃,它们共享公共随机性,并承诺在两个字符串之间的编辑距离$ \ mathsf {ed}(x,y)$之间的两个字符串之间是最多给出的值$ k $。爱丽丝必须发送$ sx $的消息,鲍勃必须向第三方查理发送$ sy $,后者不知道投入,但具有相同的公共随机性,并且也知道$ k $。查理必须输出$ \ mathsf {ed}(x,y)$,以及$ \ mathsf {ed}(x,y)$ edits的序列,将$ x $转换为$ y $所需。目标是最大程度地减少发送消息的长度$ | sx |,| sy | $。 Belazzougui和Zhang(Focs 2016)的协议,基于Chakraborty,Goldenberg和Koucký(STOC 2016)的随机步行方法,达到了最大消息长度$ \ tilde o(k^8)$ bits $ bits $ bits $ bits $ \ tilde o(\ cdot o(\ cdot)$ hides $ hide $ \ blog \ nlog \ \ \ \ contoly;在这项工作中,我们以Belazzougui和Zhang的协议为基础,并提供了改进的分析,表明其构造的稍作修改实现了$ \ tilde o(k^3)$的界限。

We provide improved upper bounds for the simultaneous sketching complexity of edit distance. Consider two parties, Alice with input $x\inΣ^n$ and Bob with input $y\inΣ^n$, that share public randomness and are given a promise that the edit distance $\mathsf{ed}(x,y)$ between their two strings is at most some given value $k$. Alice must send a message $sx$ and Bob must send $sy$ to a third party Charlie, who does not know the inputs but shares the same public randomness and also knows $k$. Charlie must output $\mathsf{ed}(x,y)$ precisely as well as a sequence of $\mathsf{ed}(x,y)$ edits required to transform $x$ into $y$. The goal is to minimize the lengths $|sx|, |sy|$ of the messages sent. The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method of Chakraborty, Goldenberg, and Koucký (STOC 2016), achieves a maximum message length of $\tilde O(k^8)$ bits, where $\tilde O(\cdot)$ hides $\mathrm{poly}(\log n)$ factors. In this work we build upon Belazzougui and Zhang's protocol and provide an improved analysis demonstrating that a slight modification of their construction achieves a bound of $\tilde O(k^3)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源