论文标题
RNNACCEL:边缘智能的融合复发神经网络加速器
RNNAccel: A Fusion Recurrent Neural Network Accelerator for Edge Intelligence
论文作者
论文摘要
许多边缘设备采用经常性神经网络(RNN)来增强其产品智能。但是,日益增长的计算复杂性为性能,能源效率和产品开发时间带来了挑战。在本文中,我们提出了一个称为RNNACCEL的RNN深度学习加速器,该加速器支持长期记忆(LSTM)网络,门控复发单元(GRU)网络,以及完全连接的层(FC)/多pecceptron层(MLP)。该RNN加速器解决(1)计算单元利用率由RNN数据依赖性引起的瓶颈,(2)针对特定应用的不灵活设计,(3)以内存访问为主的能源消耗,(4)由于系数压缩而导致的准确性损失,以及(5)由Processor-accelerator interation Integration造成的不可预测的性能。我们提出的RNN加速器由可配置的32-MAC阵列和系数减压引擎组成。 MAC阵列可以扩展以满足吞吐量需求和功率预算。它复杂的离线压缩和简单的硬件友好的在线减压(称为NeuCompression),将内存足迹降低到16倍,并降低内存访问功率。此外,为了简化SOC集成,我们开发了一个工具集,用于位精确的模拟和集成结果验证。 32-MAC RNN加速器使用关键字发现应用程序进行了评估,可实现90%的MAC利用率,1.27 TOPS/W 40NM工艺,8倍压缩比和90%的推理精度。
Many edge devices employ Recurrent Neural Networks (RNN) to enhance their product intelligence. However, the increasing computation complexity poses challenges for performance, energy efficiency and product development time. In this paper, we present an RNN deep learning accelerator, called RNNAccel, which supports Long Short-Term Memory (LSTM) network, Gated Recurrent Unit (GRU) network, and Fully Connected Layer (FC)/ Multiple-Perceptron Layer (MLP) networks. This RNN accelerator addresses (1) computing unit utilization bottleneck caused by RNN data dependency, (2) inflexible design for specific applications, (3) energy consumption dominated by memory access, (4) accuracy loss due to coefficient compression, and (5) unpredictable performance resulting from processor-accelerator integration. Our proposed RNN accelerator consists of a configurable 32-MAC array and a coefficient decompression engine. The MAC array can be scaled-up to meet throughput requirement and power budget. Its sophisticated off-line compression and simple hardware-friendly on-line decompression, called NeuCompression, reduces memory footprint up to 16x and decreases memory access power. Furthermore, for easy SOC integration, we developed a tool set for bit-accurate simulation and integration result validation. Evaluated using a keyword spotting application, the 32-MAC RNN accelerator achieves 90% MAC utilization, 1.27 TOPs/W at 40nm process, 8x compression ratio, and 90% inference accuracy.