论文标题
法伯对平面图的猜想
Farber's conjecture for planar graphs
论文作者
论文摘要
我们证明平面图的有序配置空间通常具有最高可能的拓扑复杂性,如Farber的猜想所预测的那样。我们的论点为所有更高的拓扑复杂性建立了相同的通用最大性。我们包括对非平面案例的一些讨论,表明猜想的标准方法在基本层面上失败了。
We prove that the ordered configuration spaces of planar graphs have the highest possible topological complexity generically, as predicted by a conjecture of Farber. Our argument establishes the same generic maximality for all higher topological complexities. We include some discussion of the non-planar case, demonstrating that the standard approach to the conjecture fails at a fundamental level.