论文标题
Zachary Spaces $ \ MATHCAL {Z}^P [\ MATHBB {R}^{\ infty}] $和可分开的Banach Space
Zachary spaces $\mathcal{Z}^p[\mathbb{R}^{\infty }]$ and separable Banach spaces
论文作者
论文摘要
我们以$ \ r^\ infty $构建zachary空间,发现这是一个有界平均振荡的Banach空间,该空间具有$ p,1 \ leq p \ leq p \ leq \ infty $,包含有界均值振荡$ bmo的功能[\ r_i^\ infty] $作为密集的连续胚胎的功能。作为$ \ r_i^\ infty $ we Construction $ \ mcb的应用,其中$ \ mcb $是可分开的Banach空间,最后我们构造了$ \ mcz^p [\ mcb] $。
We construct Zachary space in $\R^\infty$ and find that this is a Banach space of functions of bounded mean oscillation with order $p, 1\leq p \leq \infty$ containing the function of bounded mean oscillation $BMO[\R_I^\infty]$ as a dense continuous embedding. As an application of $\R_I^\infty$ we construction $\mcB,$ where $\mcB $ is separable Banach space and finally we construct $\mcZ^p[\mcB]$.