论文标题

具有空间异质性和BV规律性的保护法的适应性良好

Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity

论文作者

Ghoshal, Shyam Sundar, Towers, John D., Vaidya, Ganesh

论文摘要

在本文中,我们考虑了具有空间不连续性和可能的​​扁平区域的通量的标量保护定律,并研究了以下三个方面:(i)存在,(ii)唯一性和(iii)解决方案的唯一性和(iii)。我们提出了独特的条件,并通过波前跟踪方法证明了弱解的存在。在本文的后面部分,在初始数据和通量的适当条件下实现了解决方案的BV界限。我们构建了两个反示例,显示了解决方案的BV爆炸,这证明了假设的最佳性

In this article, we consider scalar conservation laws with fluxes having spatial discontinuities and possible flat regions and study the following three aspects: (i) existence, (ii) uniqueness and (iii) BV regularity of solutions. We propose a uniqueness condition and prove existence of a weak solution via the method of wave front tracking. In the later part of the article, a BV bound of the solution is achieved under a suitable condition on the initial data and flux. We construct two counterexamples showing BV blow-up of the solution which proves the optimality on the assumptions

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源