论文标题

使用SSA组件相关性和卷积神经网络从EEG信号中检测到剧烈症

Dyslexia detection from EEG signals using SSA component correlation and Convolutional Neural Networks

论文作者

Ortiz, Andrés, Martinez-Murcia, Francisco J., Formoso, Marco A., Luque, Juan Luis, Sánchez, Auxiliadora

论文摘要

客观的阅读障碍诊断并不是一项直截了当的任务,因为它传统上是通过不同行为测试的静止性进行的。此外,这些测试仅适用于读者。这样,早期诊断就需要使用与阅读相关的特定任务。因此,脑电图(EEG)的使用构成了可以与预读物一起使用的客观和早期诊断的替代方法。通过这种方式,EEG信号中相关特征的提取对于分类至关重要。但是,最相关特征的识别不是直接的,在时间或频域中预定义的统计数据并不总是足够判别。另一方面,基于提取EEG频段频率描述符的EEG信号的经典处理通常会对原始信号做出一些假设,从而导致凹陷散开。在这项工作中,我们提出了一种基于单频谱分析(SSA)在频域中分析的替代方法,以将原始信号分为代表不同振荡模式的组件。此外,使用卷积神经网络对EEG通道中每个组件获得的相关矩阵进行分类。

Objective dyslexia diagnosis is not a straighforward task since it is traditionally performed by means of the intepretation of different behavioural tests. Moreover, these tests are only applicable to readers. This way, early diagnosis requires the use of specific tasks not only related to reading. Thus, the use of Electroencephalography (EEG) constitutes an alternative for an objective and early diagnosis that can be used with pre-readers. In this way, the extraction of relevant features in EEG signals results crucial for classification. However, the identification of the most relevant features is not straighforward, and predefined statistics in the time or frequency domain are not always discriminant enough. On the other hand, classical processing of EEG signals based on extracting EEG bands frequency descriptors, usually make some assumptions on the raw signals that could cause indormation loosing. In this work we propose an alternative for analysis in the frequency domain based on Singluar Spectrum Analysis (SSA) to split the raw signal into components representing different oscillatory modes. Moreover, correlation matrices obtained for each component among EEG channels are classfied using a Convolutional Neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源