论文标题
预测太阳风中外推模型和经验关系的比较研究
A comparison study of extrapolation models and empirical relations in forecasting solar wind
论文作者
论文摘要
冠状质量弹出(CMES)和高速太阳流充满对背景太阳风的扰动,这对太空天气动态具有重大影响。因此,一个可靠的框架来准确预测背景风能,是朝着开发任何太空天气预测工具箱的基本步骤。在这项试点研究中,我们专注于对稳态,太阳风预测框架至关重要的各种模型的实施和比较。具体而言,我们对Carrington旋转2053、2082和2104进行案例研究,并将磁场外推模型的性能与速度经验公式结合使用,以预测Lagrangian Point L1的太阳风质。提出了两个不同的模型,以将太阳风从冠状结构域推送到内螺球域,即(a)基于运动学基于运动学的(Heliospheric Upwind推断[HUX])模型和(B)基于物理学的模型。基于物理的模型使用冥王星代码求解了一组保守的流体动力学方程,并可以预测太阳风的热特性。通过统计措施来量化不同模型的太阳风参数的评估。我们进一步扩展了这一开发的框架,还可以评估L1处的星际磁场的极性。我们针对CR2053情况的最佳模型给出了很高的相关系数($ \ sim $ 0.73-0.81),并且具有均方根误差为($ \ sim $ 75-90 kms $^{ - 1} $)。此外,基于物理的模型的标准偏差与从小时的Omni太阳风数据获得的模型相当,并且与观察到的太阳风质质子温度在同一数据库中测得的太阳风质子温度也相当匹配。
Coronal mass ejections (CMEs) and high speed solar streams serve as perturbations to the background solar wind that have major implications in space weather dynamics. Therefore, a robust framework for accurate predictions of the background wind properties is a fundamental step towards the development of any space weather prediction toolbox. In this pilot study, we focus on the implementation and comparison of various models that are critical for a steady state, solar wind forecasting framework. Specifically, we perform case studies on Carrington rotations 2053, 2082 and 2104, and compare the performance of magnetic field extrapolation models in conjunction with velocity empirical formulations to predict solar wind properties at Lagrangian point L1. Two different models to extrapolate the solar wind from the coronal domain to the inner-heliospheric domain are presented, namely, (a) Kinematics based (Heliospheric Upwind eXtrapolation [HUX]) model and (b) Physics based model. The physics based model solves a set of conservative equations of hydrodynamics using the PLUTO code and can additionally predict the thermal properties of solar wind. The assessment in predicting solar wind parameters of the different models is quantified through statistical measures. We further extend this developed framework to also assess the polarity of inter-planetary magnetic field at L1. Our best models for the case of CR2053 gives a very high correlation coefficient ($\sim$ 0.73-0.81) and has an root mean square error of ($\sim$ 75-90 kms$^{-1}$). Additionally, the physics based model has a standard deviation comparable with that obtained from the hourly OMNI solar wind data and also produces a considerable match with observed solar wind proton temperatures measured at L1 from the same database.