论文标题

树团的多功能验证

Versatile Verification of Tree Ensembles

论文作者

Devos, Laurens, Meert, Wannes, Davis, Jesse

论文摘要

机器学习的模型通常必须遵守某些要求(例如公平或法律)。这激发了人们对开发可以证明模型是否满足某些属性的方法感兴趣的感兴趣。本文介绍了一种称为Veritas的通用算法,该算法使得针对Tree集成模型(如随机森林(RFS)和梯度增强决策树(GBDTS))处理多个不同的验证任务。这种通用性与以前的工作形成鲜明对比,后者仅集中在对抗性示例生成或稳健性检查上。 Veritas将验证任务制定为通用优化问题,并引入了新颖的搜索空间表示。 Veritas提供了两个关键优势。首先,当无法准确解决优化问题时,它提供了下限和上限。相比之下,许多现有方法都集中在精确的解决方案上,因此受到验证问题的限制。其次,Veritas产生完整的(有限的次优)解决方案,可用于生成具体示例。我们通过实验表明,Veritas通过(a)更频繁地生成精确的解决方案来优于先前的艺术状态,(b)在不可能(a)不可能时产生更紧密的边界,并且(c)提供速度上升的数量级。随后,Veritas可以解决更多和更大的现实世界验证方案。

Machine learned models often must abide by certain requirements (e.g., fairness or legal). This has spurred interested in developing approaches that can provably verify whether a model satisfies certain properties. This paper introduces a generic algorithm called Veritas that enables tackling multiple different verification tasks for tree ensemble models like random forests (RFs) and gradient boosting decision trees (GBDTs). This generality contrasts with previous work, which has focused exclusively on either adversarial example generation or robustness checking. Veritas formulates the verification task as a generic optimization problem and introduces a novel search space representation. Veritas offers two key advantages. First, it provides anytime lower and upper bounds when the optimization problem cannot be solved exactly. In contrast, many existing methods have focused on exact solutions and are thus limited by the verification problem being NP-complete. Second, Veritas produces full (bounded suboptimal) solutions that can be used to generate concrete examples. We experimentally show that Veritas outperforms the previous state of the art by (a) generating exact solutions more frequently, (b) producing tighter bounds when (a) is not possible, and (c) offering orders of magnitude speed ups. Subsequently, Veritas enables tackling more and larger real-world verification scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源