论文标题

跨EHR系统的化粪池休克早期预测的对抗域分离框架

An Adversarial Domain Separation Framework for Septic Shock Early Prediction Across EHR Systems

论文作者

Khoshnevisan, Farzaneh, Chi, Min

论文摘要

使用电子健康记录(EHR)对患者疾病的进展进行建模对于有助于临床决策至关重要。尽管大多数先前的工作主要集中在使用从单个医疗系统中收集的EHR开发有效的疾病进展模型,但研究相对较少的工作研究了跨不同系统构建可靠但可推广的诊断模型。在这项工作中,我们提出了一个通用域适应性(DA)框架,该框架可以解决从不同医疗系统收集的EHR中的两类差异:一种是由异质性患者人群(协方差转移)引起的,另一个是由数据收集程序(系统偏见)的变化引起的。 DA的先前研究主要集中于解决协变量转移,而不是系统的偏见。在这项工作中,我们提出了一个对抗性域分离框架,该框架通过通过对抗性学习过程在所有系统中维护一个全球共享的不变潜在代表来解决两个类别的差异,同时还可以为每个系统分配一个域特异性模型,以使每个系统无法统一跨系统的局部潜在表示。此外,我们提出的框架基于变异复发性神经网络(VRNN),因为它具有捕获复杂的时间依赖性并处理时间序列数据中缺失值的能力。我们使用来自美国不同医疗系统的两个现实世界EHR的败血性冲击的早期诊断框架评估了我们的框架,结果表明,通过将全球共享的特定框架分开,我们的框架显着提高了EHR中的败血性休克早期预测的早期预测性能,并超过了当前的现行状态模型。

Modeling patient disease progression using Electronic Health Records (EHRs) is critical to assist clinical decision making. While most of prior work has mainly focused on developing effective disease progression models using EHRs collected from an individual medical system, relatively little work has investigated building robust yet generalizable diagnosis models across different systems. In this work, we propose a general domain adaptation (DA) framework that tackles two categories of discrepancies in EHRs collected from different medical systems: one is caused by heterogeneous patient populations (covariate shift) and the other is caused by variations in data collection procedures (systematic bias). Prior research in DA has mainly focused on addressing covariate shift but not systematic bias. In this work, we propose an adversarial domain separation framework that addresses both categories of discrepancies by maintaining one globally-shared invariant latent representation across all systems} through an adversarial learning process, while also allocating a domain-specific model for each system to extract local latent representations that cannot and should not be unified across systems. Moreover, our proposed framework is based on variational recurrent neural network (VRNN) because of its ability to capture complex temporal dependencies and handling missing values in time-series data. We evaluate our framework for early diagnosis of an extremely challenging condition, septic shock, using two real-world EHRs from distinct medical systems in the U.S. The results show that by separating globally-shared from domain-specific representations, our framework significantly improves septic shock early prediction performance in both EHRs and outperforms the current state-of-the-art DA models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源