论文标题

基于自动编码器的高光谱异常变化检测

Hyperspectral Anomaly Change Detection Based on Auto-encoder

论文作者

Hu, Meiqi, Wu, Chen, Zhang, Liangpei, Du, Bo

论文摘要

借助高光谱成像技术,高光谱数据提供了丰富的光谱信息,并在地质调查,植被分析和军事侦察中起着更重要的作用。与正常变化检测不同,高光谱异常变化检测(HACD)有助于找到多个颞高光谱图像(HSI)之间那些小而重要的异常变化。在以前的工作中,大多数经典方法都使用线性回归来建立两个HSI之间的映射关系,然后从残留图像中检测异常。但是,多时间HSI之间的实际光谱差异可能非常复杂且非线性,从而导致这些线性预测指标的性能有限。在本文中,我们提出了一种基于自动编码器(ACDA)的原始HACD算法,以提供非线性解决方案。在面对复杂成像条件时,提出的ACDA可以构建有效的预测模型。在ACDA模型中,部署了两个系统的自动编码器(AE)网络,以从两个方向构建两个预测指标。预测因子用于对背景的光谱变化进行建模,以在另一个成像条件下获得预测图像。然后计算预测图像和相应的预期图像之间的均方根误差(MSE),以获得损耗图,其中未改变的像素的光谱差异被高度抑制,并且强调异常变化。最终,我们将两个方向的两个损耗图的最小值作为最终异常变化强度图。实验结果是公共“ Viareggio 2013”​​数据集的结果,证明了与传统方法的效率和优势。

With the hyperspectral imaging technology, hyperspectral data provides abundant spectral information and plays a more important role in geological survey, vegetation analysis and military reconnaissance. Different from normal change detection, hyperspectral anomaly change detection (HACD) helps to find those small but important anomaly changes between multi-temporal hyperspectral images (HSI). In previous works, most classical methods use linear regression to establish the mapping relationship between two HSIs and then detect the anomalies from the residual image. However, the real spectral differences between multi-temporal HSIs are likely to be quite complex and of nonlinearity, leading to the limited performance of these linear predictors. In this paper, we propose an original HACD algorithm based on auto-encoder (ACDA) to give a nonlinear solution. The proposed ACDA can construct an effective predictor model when facing complex imaging conditions. In the ACDA model, two systematic auto-encoder (AE) networks are deployed to construct two predictors from two directions. The predictor is used to model the spectral variation of the background to obtain the predicted image under another imaging condition. Then mean square error (MSE) between the predictive image and corresponding expected image is computed to obtain the loss map, where the spectral differences of the unchanged pixels are highly suppressed and anomaly changes are highlighted. Ultimately, we take the minimum of the two loss maps of two directions as the final anomaly change intensity map. The experiments results on public "Viareggio 2013" datasets demonstrate the efficiency and superiority over traditional methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源