论文标题

使用移动性数据的第一波Covid-19之后的遏制策略

Containment strategies after the first wave of COVID-19 using mobility data

论文作者

Gösgens, Martijn, Hendriks, Teun, Boon, Marko, Keuning, Stijn, Steenbakkers, Wim, Heesterbeek, Hans, van der Hofstad, Remco, Litvak, Nelly

论文摘要

在对199次疫情的回应中,政府面临着平衡公共卫生和经济的困境。流动性在这一困境中起着核心作用,因为人们的运动能够使经济活动和病毒传播。我们使用区域之间旅行者计数形式的移动性数据扩展了经常使用的SEIR模型,以包括区域之间的移动性。我们根据单个参数(由政策制定者选择)量化了流动性和感染分布之间的权衡,并提出了限制流动性的策略,以便限制最小,而感染率差则有效地有限。我们考虑该国分为区域的限制,并研究这些地区允许在这些地区允许流动性并在它们之间禁止的情况。我们提出了启发式方法,以近似这些区域的最佳选择。我们根据我们的权衡评估获得的限制。结果表明,当感染高度浓缩时,我们的方法特别有效,例如,由于超级公布事件在Covid-19的传播中起着重要作用,因此,在几个城市左右。我们在荷兰的示例中演示了我们的方法。当有移动性数据可用时,该结果更广泛地适用。

In their response to the COVID-19 outbreak, governments face the dilemma to balance public health and economy. Mobility plays a central role in this dilemma because the movement of people enables both economic activity and virus spread. We use mobility data in the form of counts of travelers between regions, to extend the often-used SEIR models to include mobility between regions. We quantify the trade-off between mobility and infection spread in terms of a single parameter, to be chosen by policy makers, and propose strategies for restricting mobility so that the restrictions are minimal while the infection spread is effectively limited. We consider restrictions where the country is divided into regions, and study scenarios where mobility is allowed within these regions, and disallowed between them. We propose heuristic methods to approximate optimal choices for these regions. We evaluate the obtained restrictions based on our trade-off. The results show that our methods are especially effective when the infections are highly concentrated, e.g., around a few municipalities, as resulting from superspreading events that play an important role in the spread of COVID-19. We demonstrate our method in the example of the Netherlands. The results apply more broadly when mobility data is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源