论文标题

图上的孪晶操作并不总是保留$ e $ - 积极性

The twinning operation on graphs does not always preserve $e$-positivity

论文作者

Li, Ethan Y. H., Li, Grace M. X., Wang, David G. L., Yang, Arthur L. B.

论文摘要

由斯坦利的$ \ mathbf {(3+1)} $ - 在色度对称功能上的自由猜想,Foley,Hoàng和Merkel引入了强烈$ e $ positivity的概念,并猜测图认为图形是强烈的$ e $ $ e $ positive,并且仅在IT(Claw,网络,网上)时才呈现。为了强烈研究$ e $ p的阳性图,他们进一步在图形$ g $上引入了twinning操作,相对于顶点$ v $,它增加了$ v $ g $ g $ g $ v $ v $ v $ v $和$ v'$,因此$ v $和$ v'$均与其他任何顶点相邻。 Foley,Hoàng和Merkel猜想,如果$ G $是$ e $ - 阳性,那么任何顶点$ v $的生成的双图$ g_v $也是如此。基于Gebhard和Sagan开发的非交通变量中的色度对称函数的理论,我们建立了称为Tadpole图的一类图形的$ e $ potititive。通过考虑这些图的子类的孪生操作,相对于某些顶点,我们反驳了Foley,Hoàng和Merkel的后一种猜想。我们进一步表明,如果$ g $是$ e $ - 良好的,则双图$ g_v $,更一般而言,氏族图$ g^{(k)} _v $($ k \ ge 1 $)甚至都不是$ s $ positive,其中$ g^{(k)v $从$ g $中获得$ g $ a $ k $ a $ k $ a $ k $ $ k $ $ k $ $ k $ $ k $ $ k $ twinning twning to $ $ twning to vinning

Motivated by Stanley's $\mathbf{(3+1)}$-free conjecture on chromatic symmetric functions, Foley, Hoàng and Merkel introduced the concept of strong $e$-positivity and conjectured that a graph is strongly $e$-positive if and only if it is (claw, net)-free. In order to study strongly $e$-positive graphs, they further introduced the twinning operation on a graph $G$ with respect to a vertex $v$, which adds a vertex $v'$ to $G$ such that $v$ and $v'$ are adjacent and any other vertex is adjacent to both of them or neither of them. Foley, Hoàng and Merkel conjectured that if $G$ is $e$-positive, then so is the resulting twin graph $G_v$ for any vertex $v$. Based on the theory of chromatic symmetric functions in non-commuting variables developed by Gebhard and Sagan, we establish the $e$-positivity of a class of graphs called tadpole graphs. By considering the twinning operation on a subclass of these graphs with respect to certain vertices we disprove the latter conjecture of Foley, Hoàng and Merkel. We further show that if $G$ is $e$-positive, the twin graph $G_v$ and more generally the clan graphs $G^{(k)}_v$ ($k \ge 1$) may not even be $s$-positive, where $G^{(k)}_v$ is obtained from $G$ by applying $k$ twinning operations to $v$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源