论文标题

傅里叶积分运算符的方形功能估算和本地平滑

Square function estimates and Local smoothing for Fourier Integral Operators

论文作者

Gao, Chuanwei, Liu, Bochen, Miao, Changxing, Xi, Yakun

论文摘要

我们证明了guth-wang-zhang的平方函数估计值的可变系数版本。通过概念概念的经典论点 - 索格(Sogge),这意味着满足电影曲率条件的$ 2+1 $尺寸傅立叶积分算子的全部尖锐局部平滑估计值。特别是,紧凑的riemannian表面上的波动方程的局部平滑猜想已经完全解决。

We prove a variable coefficient version of the square function estimate of Guth--Wang--Zhang. By a classical argument of Mockenhaupt--Seeger--Sogge, it implies the full range of sharp local smoothing estimates for $2+1$ dimensional Fourier integral operators satisfying the cinematic curvature condition. In particular, the local smoothing conjecture for wave equations on compact Riemannian surfaces is completely settled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源