论文标题
部分模式:有效解决多级运动计划中的狭窄通道问题
Section Patterns: Efficiently Solving Narrow Passage Problems in Multilevel Motion Planning
论文作者
论文摘要
由于段落狭窄,基于抽样的计划方法通常变得效率低下。狭窄的段落会引起更高的运行时间,因为品尝它们的机会变得很小。在最近的工作中,我们表明可以通过使用状态空间的可接受的低维投影来放松问题来解决狭窄的段落。这些放松通常会增加投影下的狭窄通道的体积。解决轻松的问题通常是有效的,并且会产生我们可以利用的可接受的启发式方法。但是,给定基本路径,即解决放松问题的解决方案,目前尚无定制方法可以有效利用基本路径。为了有效利用基本路径并因此可以接受启发式,我们开发了截面模式,这些策略是有效利用基本路径,尤其是在狭窄段落周围的基本路径。为了协调截面模式,我们开发了模式舞蹈算法,该算法有效地协调了截面模式,以反应横穿狭窄的段落。我们将图案舞蹈算法与先前开发的多层次计划算法结合在一起,并基于挑战性的计划问题,例如Bugtrap,Double L Shape,Egress问题,以及在Kuka LWR机器人上安装的37自由度阴影手工的四个预盖场景。我们的结果证实,截面模式对于有效解决高维窄通道运动计划问题很有用。
Sampling-based planning methods often become inefficient due to narrow passages. Narrow passages induce a higher runtime, because the chance to sample them becomes vanishingly small. In recent work, we showed that narrow passages can be approached by relaxing the problem using admissible lower-dimensional projections of the state space. Those relaxations often increase the volume of narrow passages under projection. Solving the relaxed problem is often efficient and produces an admissible heuristic we can exploit. However, given a base path, i.e. a solution to a relaxed problem, there are currently no tailored methods to efficiently exploit the base path. To efficiently exploit the base path and thereby its admissible heuristic, we develop section patterns, which are solution strategies to efficiently exploit base paths in particular around narrow passages. To coordinate section patterns, we develop the pattern dance algorithm, which efficiently coordinates section patterns to reactively traverse narrow passages. We combine the pattern dance algorithm with previously developed multilevel planning algorithms and benchmark them on challenging planning problems like the Bugtrap, the double L-shape, an egress problem and on four pregrasp scenarios for a 37 degrees of freedom shadow hand mounted on a KUKA LWR robot. Our results confirm that section patterns are useful to efficiently solve high-dimensional narrow passage motion planning problems.