论文标题

自主系统的感知(PAZ)

Perception for Autonomous Systems (PAZ)

论文作者

Arriaga, Octavio, Valdenegro-Toro, Matias, Muthuraja, Mohandass, Devaramani, Sushma, Kirchner, Frank

论文摘要

在本文中,我们介绍了自治系统(PAZ)软件库的看法。 PAZ是一个分层感知库,允许用户根据其要求或技能水平来操纵多个级别的抽象。更具体地说,PAZ分为三个分层级别,我们称为管道,处理器和后端。这些抽象允许用户在层次模块化方案中构成功能,该方案可用于进行预处理,数据启动,预测和后处理机器学习(ML)模型的输入。 PAZ使用这些抽象来构建可重复使用的培训和预测管道,以用于多个机器人感知任务,例如:2D关键点估计,2D对象检测,3D关键点发现,6D姿势估计,情绪分类,面部识别,实例段,实例分段和注意机制。

In this paper we introduce the Perception for Autonomous Systems (PAZ) software library. PAZ is a hierarchical perception library that allow users to manipulate multiple levels of abstraction in accordance to their requirements or skill level. More specifically, PAZ is divided into three hierarchical levels which we refer to as pipelines, processors, and backends. These abstractions allows users to compose functions in a hierarchical modular scheme that can be applied for preprocessing, data-augmentation, prediction and postprocessing of inputs and outputs of machine learning (ML) models. PAZ uses these abstractions to build reusable training and prediction pipelines for multiple robot perception tasks such as: 2D keypoint estimation, 2D object detection, 3D keypoint discovery, 6D pose estimation, emotion classification, face recognition, instance segmentation, and attention mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源