论文标题
切线场,内在的平稳性和自相似性(对Matheron理论的补充)
Tangent fields, intrinsic stationarity, and self-similarity (with a supplement on Matheron Theory)
论文作者
论文摘要
本文研究了$ \ mathbb r^d $在完整可分开的线性度量空间$ {\ mathbb v} $中的值的局部结构。扩展了Falconer的开创性作品,我们表明,从Matheron的意义上讲,广义的$(1+K)$ - 订单增量切线是自相似的,几乎所有地方都具有本质上的静止。这些结果激发了对$ {\ Mathbb V} $的结构的进一步研究 - 订单$ k $的固有随机功能(irf $ _k $,\ $ k = 0,1,\ cdots $)。为此,我们专注于$ {\ mathbb v} $是希尔伯特空间的特殊情况。在Sasvari和Berschneider的作品的基础上,我们建立了所有第二阶$ {\ Mathbb V} $的光谱表征 - 估值的IRF $ _K $',扩展了经典的Matheron理论。使用这些结果,我们进一步表征了高斯,操作员自相似$ {\ mathbb v} $的类别 - 有价值的irf $ _k $,概括了Dobrushin和Didier,Meerschaert和Pipiras等。这些过程是一般$ k $ ther订单运算符分数布朗田地的希尔伯特空间价值版本,其特征在于其自相似性操作员指数以及有限的跟踪类运算符的有价值的光谱测量。我们以几个示例来结束,这些例子激发了未来对概率和统计的应用。 在独立兴趣的技术补充中,我们为Matheron光谱理论提供了统一的处理,用于在可分离的希尔伯特空间中以值的价值进行二阶固定和本质固定过程。我们提供Bochner-Neeb和Bochner-Schwartz定理的证明。
This paper studies the local structure of continuous random fields on $\mathbb R^d$ taking values in a complete separable linear metric space ${\mathbb V}$. Extending seminal work of Falconer, we show that the generalized $(1+k)$-th order increment tangent fields are self-similar and almost everywhere intrinsically stationary in the sense of Matheron. These results motivate the further study of the structure of ${\mathbb V}$-valued intrinsic random functions of order $k$ (IRF$_k$,\ $k=0,1,\cdots$). To this end, we focus on the special case where ${\mathbb V}$ is a Hilbert space. Building on the work of Sasvari and Berschneider, we establish the spectral characterization of all second order ${\mathbb V}$-valued IRF$_k$'s, extending the classical Matheron theory. Using these results, we further characterize the class of Gaussian, operator self-similar ${\mathbb V}$-valued IRF$_k$'s, generalizing results of Dobrushin and Didier, Meerschaert and Pipiras, among others. These processes are the Hilbert-space-valued versions of the general $k$-th order operator fractional Brownian fields and are characterized by their self-similarity operator exponent as well as a finite trace class operator valued spectral measure. We conclude with several examples motivating future applications to probability and statistics. In a technical Supplement of independent interest, we provide a unified treatment of the Matheron spectral theory for second-order stationary and intrinsically stationary processes taking values in a separable Hilbert space. We give the proofs of the Bochner-Neeb and Bochner-Schwartz theorems.