论文标题

渐近极限,BANACH极限和CESàRO意味着

Asymptotic limits, Banach limits, and Cesàro means

论文作者

Kubrusly, C. S., Duggal, B. P.

论文摘要

希尔伯特空间中的每一个新产品都是通过独特的正算子$ $。$。本文的第一部分是对这种技术的应用的调查,包括与同音相似的表征$。$第二部分重点介绍了与电力界操作员交易的Banach限制。结果表明,如果一个偏移的cesàRo序列在移位参数中均匀收敛(至少在弱拓扑中),则它具有与所有Banach Limits $φ$相一致的cesàRo渐近极限。

Every new inner product in a Hilbert space is obtained from the original one by means of a unique positive operator$.$ The first part of the paper is a survey on applications of such a technique, including a characterization of similarity to isometries$.$ The second part focuses on Banach limits for dealing with power bounded operators. It is shown that if a power bounded operator for which the sequence of shifted Cesàro means converges (at least in the weak topology) uniformly in the shift parameter, then it has a Cesàro asymptotic limit coinciding with its $φ$-asymptotic limit for all Banach limits $φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源