论文标题
基于加速的机器人运动设计的几何织物
Geometric Fabrics for the Acceleration-based Design of Robotic Motion
论文作者
论文摘要
本文介绍了务实的设计和构建几何织物,用于塑造机器人的任务无关的名义行为,捕获诸如避免障碍物,避免障碍物,避免关节限制,冗余,全球导航启发式等行为组件等行为成分。几何织物构成了最具体的数学配方构成最具体的织物化织物的构成最具体的化妆式化型号。织物概括了有关Riemannian运动政策(RMP)的最新工作;它们增加了可证明的稳定性保证并提高了设计一致性,同时促进了使RMP成功的模块化设计原理。我们描述了一套数学建模工具,从业人员可以在实践中采用,并通过层层构建行为以及如何利用这些工具来设计强大的,强烈的临时性,解决实践问题,以解决人们期望在行业应用中发现的实践问题。我们的系统表现出智能的全球导航行为,完全表达为稳定的面料,具有零计划或状态机治理。
This paper describes the pragmatic design and construction of geometric fabrics for shaping a robot's task-independent nominal behavior, capturing behavioral components such as obstacle avoidance, joint limit avoidance, redundancy resolution, global navigation heuristics, etc. Geometric fabrics constitute the most concrete incarnation of a new mathematical formulation for reactive behavior called optimization fabrics. Fabrics generalize recent work on Riemannian Motion Policies (RMPs); they add provable stability guarantees and improve design consistency while promoting the intuitive acceleration-based principles of modular design that make RMPs successful. We describe a suite of mathematical modeling tools that practitioners can employ in practice and demonstrate both how to mitigate system complexity by constructing behaviors layer-wise and how to employ these tools to design robust, strongly-generalizing, policies that solve practical problems one would expect to find in industry applications. Our system exhibits intelligent global navigation behaviors expressed entirely as provably stable fabrics with zero planning or state machine governance.