论文标题

Wasserstein-2内核的等级高斯流程

Hierarchical Gaussian Processes with Wasserstein-2 Kernels

论文作者

Popescu, Sebastian, Sharp, David, Cole, James, Glocker, Ben

论文摘要

堆叠高斯工艺会严重降低模型检测异常值的能力,当与非零平均功能结合使用时,该模型将其进一步推断出低的非参数方差到低训练数据密度区域。我们提出了一种在欧几里得和瓦斯坦斯坦空间中运行的Varifold理论启发的混合核。我们认为,直接考虑到Wasserstein-2距离计算的差异对于在整个层次结构中保持异常地位至关重要。我们在中型和大型数据集上显示出改进的性能,并增强了玩具和真实数据的分布外检测。

Stacking Gaussian Processes severely diminishes the model's ability to detect outliers, which when combined with non-zero mean functions, further extrapolates low non-parametric variance to low training data density regions. We propose a hybrid kernel inspired from Varifold theory, operating in both Euclidean and Wasserstein space. We posit that directly taking into account the variance in the computation of Wasserstein-2 distances is of key importance towards maintaining outlier status throughout the hierarchy. We show improved performance on medium and large scale datasets and enhanced out-of-distribution detection on both toy and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源