论文标题

在混合边界条件下,对流热通量增加的物理机制增加

Physical mechanism of the convective heat flux increasing in case of mixed boundary conditions

论文作者

Sukhanovskii, Andrei, Vasiliev, Andrei

论文摘要

为了检查混合边界条件时,进行了一系列对立方腔中的雷利 - b {é}对流的数值模拟,以检查热边界层的结构。该研究的主要目的是物理机制,该机制提供了热通量的增加,并具有传导 - 绝热模式的空间频率。从$ \ ray = 10^{7} $到$ \ ray = 2.0 \ times 10^{9} $,考虑了导电板的不同空间配置,包括分形的板。我们已经表明,在底部混合边界条件的情况下,温度边界层非常均匀。这种非均匀性是几个因素,例如导电 - 透射循环和小规模的动作,对导电板进行了小规模的运动。热边界层的厚度在很大程度上取决于导电板的尺寸,并且可能要比经典的Rayleigh-b {é} NARD对流小得多。这种效果通过减小热板的大小而增加热通量,这对应于传导 - 绝热模式的空间频率的增加。

A series of numerical simulations of Rayleigh-B{é}nard convection in a cubic cavity are conducted in order to examine the structure of the thermal boundary layer in case of mixed boundary conditions. The main goal of the study is the physical mechanism which provides increasing of heat flux with spatial frequency of conducting-adiabatic pattern. Different spatial configuration of conducting plates, including the fractal one, are considered for Rayleigh numbers from $\Ray=10^{7}$ to $\Ray=2.0\times 10^{9}$. We have shown that the temperature boundary layer in case of mixed boundary conditions at the bottom is strongly non-uniform. This non-homogeneity is a result of several factors such as conducting-adiabatic pattern, large-scale circulation and small-scale motions over conducting plates. The thickness of the thermal boundary layer strongly depends on the size of the conducting plates and can be substantially smaller than for a classical Rayleigh-B{é}nard convection. This effect increases the heat flux with decreasing the size of hot plates, which corresponds to the increasing of spatial frequency of conducting-adiabatic pattern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源