论文标题
评估财务时间序列分类的数据增加
Evaluating data augmentation for financial time series classification
论文作者
论文摘要
与深层神经网络相结合的数据增强方法已在分类任务的计算机愿景中广泛使用,取得了巨大的成功;但是,它们在时间序列分类中的使用仍处于早期阶段。在财务预测领域,数据往往很小,嘈杂且非平稳。在本文中,我们评估了使用两个最先进的深度学习模型应用于股票数据集的几种增强方法。结果表明,与交易策略结合使用时,几种增强方法可显着提高财务绩效。对于一个相对较小的数据集($ \ \ \ of 330k $样品),增强方法可达到高达$ 400 \%$ $改善风险调整后的收益率;对于较大的库存数据集($ \ $ \ 300k $样品),结果最高为$ 40 \%$ $。
Data augmentation methods in combination with deep neural networks have been used extensively in computer vision on classification tasks, achieving great success; however, their use in time series classification is still at an early stage. This is even more so in the field of financial prediction, where data tends to be small, noisy and non-stationary. In this paper we evaluate several augmentation methods applied to stocks datasets using two state-of-the-art deep learning models. The results show that several augmentation methods significantly improve financial performance when used in combination with a trading strategy. For a relatively small dataset ($\approx30K$ samples), augmentation methods achieve up to $400\%$ improvement in risk adjusted return performance; for a larger stock dataset ($\approx300K$ samples), results show up to $40\%$ improvement.