论文标题

光学孤子形成由光子moiré晶格中的角度扭曲控制

Optical soliton formation controlled by angle twisting in photonic moiré lattices

论文作者

Fu, Qidong, Wang, Peng, Huang, Changming, Kartashov, Yaroslav V., Torner, Lluis, Konotop, Vladimir V., Ye, Fangwei

论文摘要

探索具有可调的几何特性对物理过程的合成材料景观的影响是一个研究方向,目前引起了人们的极大兴趣,因为出色的现象不断被发现。 MoiréLattices中的互二旋律和波动的特性是显着的例子。 Moiré模式弥合了植物结构和完美晶体之间的缝隙,从而为探索效果的范围打开了大门,伴随着从相应到不相差的阶段过渡。 Moiré模式揭示了基于石墨烯的系统1,2,3,4,5的深远影响,它们用于操纵超低原子6,7并产生量规势8,并在胶体簇中观察到9。最近,显示的光子moiré晶格可以观察纯线性系统中光的二维定位到偏置转变10,11111111。在这里,我们在光赋予非线性介质中使用Moiré晶格光学诱导,以在不同的几何条件下阐明光学孤子的形成,这些孤子子在不同的几何条件下由构型旋转的扭曲角控制。我们观察到在晶格中形成的孤子形成,从完全周期性的几何形状平稳过渡到植物的几何形状,其阈值特性是原始的扁平波段物理学的原始直接表现。

Exploration of the impact of synthetic material landscapes featuring tunable geometrical properties on physical processes is a research direction that is currently of great interest because of the outstanding phenomena that are continually being uncovered. Twistronics and the properties of wave excitations in moiré lattices are salient examples. Moiré patterns bridge the gap between aperiodic structures and perfect crystals, thus opening the door to the exploration of effects accompanying the transition from commensurate to incommensurate phases. Moiré patterns have revealed profound effects in graphene-based systems1,2,3,4,5, they are used to manipulate ultracold atoms6,7 and to create gauge potentials8, and are observed in colloidal clusters9. Recently, it was shown that photonic moiré lattices enable observation of the two-dimensional localization-to-delocalization transition of light in purely linear systems10,11. Here, we employ moiré lattices optically induced in photorefractive nonlinear media12,13,14 to elucidate the formation of optical solitons under different geometrical conditions controlled by the twisting angle between the constitutive sublattices. We observe the formation of solitons in lattices that smoothly transition from fully periodic geometries to aperiodic ones, with threshold properties that are a pristine direct manifestation of flat-band physics11.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源