论文标题

高斯流程基于模型的控制余额机器人的控制

Gaussian Processes Model-based Control of Underactuated Balance Robots

论文作者

Chen, Kuo, Yi, Jingang, Song, Dezhen

论文摘要

从卡车杆系统和自动骑自行车到两足机器人的范围,对这些不足的平衡机器人的控制旨在实现外部(驱动的)子系统轨迹跟踪以及内部(未启动的)子系统平衡任务与有限的驱动机构。本文提出了一个基于学习模型的控制框架,该框架针对不足的平衡机器人。同时实现跟踪和平衡任务的关键思想是分别以缓慢和快速的量表设计控制策略。在慢速量表中,模型预测控制(MPC)用于生成所需的内部子系统轨迹,该轨迹编码外部子系统跟踪性能和控制输入。在快速尺度上,使用逆动力学控制器将实际的内部轨迹稳定在所需的内部轨迹上。外部子系统和内部子系统之间的耦合效应是通过计划的内部轨迹轮廓和机器人系统的双重结构特性捕获的。控制设计基于高斯流程(GPS)回归模型,这些模型是从实验中学到的,而无需先前了解机器人动力学或成功的平衡演示。 GP提供了对机器人系统不确定性建模的估计值,这些不确定性估计已纳入MPC设计,以增强对建模误差的控制鲁棒性。基于学习的控制设计通过保证的稳定性和性能进行分析。在呋喃摆和自动骑自动骑行机器人上进行的实验证明了所提出的设计。

Ranging from cart-pole systems and autonomous bicycles to bipedal robots, control of these underactuated balance robots aims to achieve both external (actuated) subsystem trajectory tracking and internal (unactuated) subsystem balancing tasks with limited actuation authority. This paper proposes a learning model-based control framework for underactuated balance robots. The key idea to simultaneously achieve tracking and balancing tasks is to design control strategies in slow- and fast-time scales, respectively. In slow-time scale, model predictive control (MPC) is used to generate the desired internal subsystem trajectory that encodes the external subsystem tracking performance and control input. In fast-time scale, the actual internal trajectory is stabilized to the desired internal trajectory by using an inverse dynamics controller. The coupling effects between the external and internal subsystems are captured through the planned internal trajectory profile and the dual structural properties of the robotic systems. The control design is based on Gaussian processes (GPs) regression model that are learned from experiments without need of priori knowledge about the robot dynamics nor successful balance demonstration. The GPs provide estimates of modeling uncertainties of the robotic systems and these uncertainty estimations are incorporated in the MPC design to enhance the control robustness to modeling errors. The learning-based control design is analyzed with guaranteed stability and performance. The proposed design is demonstrated by experiments on a Furuta pendulum and an autonomous bikebot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源