论文标题

关于高效且可扩展的时间连续的空间众包 - 完整版本

On Efficient and Scalable Time-Continuous Spatial Crowdsourcing -- Full Version

论文作者

Wang, Ting, Xie, Xike, Cao, Xin, Pedersen, Torben Bach, Wang, Yang, Xiao, Mingjun

论文摘要

高级移动码头的扩散开辟了一条新的众包大道,即空间众包,以利用人群的潜力来执行现实世界的任务。在这项工作中,我们研究了一种新型的空间众包,称为时间连续的空间众包(很简单)。它支持长期连续空间数据获取的广泛应用,从环境监测到公民科学和众包项目中的交通监视。但是,由于预算有限和在实践中工人的可用性有限,收集到的数据通常是不完整的,会导致数据缺陷问题。为了解决这项工作,我们首先提出了一个基于熵的质量指标,该指标捕获了数据获取中不完整的关节影响和数据插值中的不精确性。基于此,我们研究了单个和多任务方案的质量意识的任务分配方法。我们显示了单任务案例的NP硬度,并显示具有保证近似比的多项式时间算法。我们研究新颖的索引和修剪技术,以进一步提高实践中的性能。然后,我们将解决方案扩展到多任务场景,并设计了一个并行框架来加速优化过程。我们对真实和合成数据集进行了广泛的实验,以显示我们的建议的有效性。

The proliferation of advanced mobile terminals opened up a new crowdsourcing avenue, spatial crowdsourcing, to utilize the crowd potential to perform real-world tasks. In this work, we study a new type of spatial crowdsourcing, called time-continuous spatial crowdsourcing (TCSC in short). It supports broad applications for long-term continuous spatial data acquisition, ranging from environmental monitoring to traffic surveillance in citizen science and crowdsourcing projects. However, due to limited budgets and limited availability of workers in practice, the data collected is often incomplete, incurring data deficiency problem. To tackle that, in this work, we first propose an entropy-based quality metric, which captures the joint effects of incompletion in data acquisition and the imprecision in data interpolation. Based on that, we investigate quality-aware task assignment methods for both single- and multi-task scenarios. We show the NP-hardness of the single-task case, and design polynomial-time algorithms with guaranteed approximation ratios. We study novel indexing and pruning techniques for further enhancing the performance in practice. Then, we extend the solution to multi-task scenarios and devise a parallel framework for speeding up the process of optimization. We conduct extensive experiments on both real and synthetic datasets to show the effectiveness of our proposals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源