论文标题
异质种群流行病的最终大小和收敛率
Final size and convergence rate for an epidemic in heterogeneous population
论文作者
论文摘要
我们在空间r d的离散或连续子集中以某种特征为特征的异源种群中制定了一般的SEIR流行模型。每个同质亚群的演变的孵化和恢复率取决于这一特征,并且在接触矩阵上不假定定义给定特征个体的概率要被其他性状感染的概率。我们的目标是得出并研究通过人口的极限分布实现的最终尺寸方程。我们表明,此极限存在并满足最终尺寸方程。主要贡献是证明该解决方案在小于初始条件的分布中的独特性。我们还确定,下一代操作员的主要特征值(其初始值等于基本的繁殖数)沿每个轨迹降低,直到限制小于1的极限为止。结果显示,在存在扩散项的情况下,结果保持有效。他们概括了以前的作品,这些作品与有限数量的性状(包括种群模型)或等级1触点矩阵(建模,例如易感性或感染性,彼此独立地呈现异质性)。
We formulate a general SEIR epidemic model in a heterogenous population characterized by some trait in a discrete or continuous subset of a space R d. The incubation and recovery rates governing the evolution of each homogenous subpopulation depend upon this trait, and no restriction is assumed on the contact matrix that defines the probability for an individual of a given trait to be infected by an individual with another trait. Our goal is to derive and study the final size equation fulfilled by the limit distribution of the population. We show that this limit exists and satisfies the final size equation. The main contribution is to prove the uniqueness of this solution among the distributions smaller than the initial condition. We also establish that the dominant eigenvalue of the next-generation operator (whose initial value is equal to the basic reproduction number) decreases along every trajectory until a limit smaller than 1. The results are shown to remain valid in presence of diffusion term. They generalize previous works corresponding to finite number of traits (including metapopulation models) or to rank 1 contact matrix (modeling e.g. susceptibility or infectivity presenting heterogeneity independently of one another).