论文标题

Sobolev空间和$ \ nabla $ -Differential Operators i:基本属性和加权空间

Sobolev spaces and $\nabla$-differential operators on manifolds I: basic properties and weighted spaces

论文作者

Kohr, Mirela, Nistor, Victor

论文摘要

我们研究{\ em $ \ nabla $ -sobolev spaces}和{\ em $ \ nabla $ -divferential operators},其系数在赫尔米尼亚式载流的一般性中,并强调了一种坐标的方法,强调了一种使用连接的坐标方法(通常指的是指示$ \ nabla $)。这些概念自然来自部分微分方程,包括在普通的欧几里得领域配制的一些概念,例如用于研究奇异域上PDE的加权Sobolev空间。我们证明了$ \ nabla $ -sobolev空间的几个基本属性以及一般歧管上的$ \ nabla $ -Differentic operators的几个基本属性。例如,我们证明了我们的差分运算符的映射属性,以及$ \ nabla $ -sobolev空格的独立性,就完全有限的扰动而言,连接$ \ nabla $的选择。我们为完全有限的向量字段引入了一个{\ emfréchet有限性条件}(FFC),例如,通过具有有界几何形状的歧管的开放子集满足。当满足(FFC)时,我们提供了$ \ nabla $ -sobolev Space和$ \ nabla $ -Differential运算符的几个等效定义。我们更详细地检查了欧几里得空间中域的特定情况,包括加权Sobolev空间的情况。我们还介绍并研究了{\ em $ \ nabla $ -bidifferential}操作员(双线性差异操作员的双线性版本)的概念,获得的结果与$ \ nabla $ -Differential Operators获得的结果相似。双线性差异操作员对于全球变异问题的几何讨论是必需的。我们试图写论文,以便大量受众可以访问它。

We study {\em $\nabla$-Sobolev spaces} and {\em $\nabla$-differential operators} with coefficients in general Hermitian vector bundles on Riemannian manifolds, stressing a coordinate free approach that uses connections (which are typically denoted $\nabla$). These concepts arise naturally from Partial Differential Equations, including some that are formulated on plain Euclidean domains, such as the weighted Sobolev spaces used to study PDEs on singular domains. We prove several basic properties of the $\nabla$-Sobolev spaces and of the $\nabla$-differential operators on general manifolds. For instance, we prove mapping properties for our differential operators and independence of the $\nabla$-Sobolev spaces on the choices of the connection $\nabla$ with respect to totally bounded perturbations. We introduce a {\em Fréchet finiteness condition} (FFC) for totally bounded vector fields, which is satisfied, for instance, by open subsets of manifolds with bounded geometry. When (FFC) is satisfied, we provide several equivalent definitions of our $\nabla$-Sobolev spaces and of our $\nabla$-differential operators. We examine in more detail the particular case of domains in the Euclidean space, including the case of weighted Sobolev spaces. We also introduce and study the notion of a {\em $\nabla$-bidifferential} operator (a bilinear version of differential operators), obtaining results similar to those obtained for $\nabla$-differential operators. Bilinear differential operators are necessary for a global, geometric discussion of variational problems. We tried to write the paper so that it is accessible to a large audience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源