论文标题
关于广义统计平衡和离散量子重力
On Generalised Statistical Equilibrium and Discrete Quantum Gravity
论文作者
论文摘要
统计平衡配置在具有大量组成自由度的宏观系统的物理学中很重要。预计它们在离散的量子重力中也是至关重要的,在这些量子重力中,动态时空应该从基础量子引力自由度的集体物理学中出现。但是,在背景独立系统中定义统计平衡是一个具有挑战性的开放问题,这主要是由于没有时间和能量的绝对概念。在没有通常的空间和时间结构的非扰动量子重力框架中尤其如此。在本文中,我们研究了适用于背景独立系统的统计平衡概括的概括的各个方面。我们强调基于最大熵原理的信息理论表征。随后,我们利用其群体场理论和各种多体技术的场理论表述,探索由许多候选几何学量子组成的离散量子引力系统中所得的广义吉布斯状态。我们构建了量子引力广义吉布斯状态的几个具体实例。我们进一步发展了基于一类广义吉布斯状态的纠缠,两模式挤压的Thermofield Double Vacua的不等热表示。在这些表示中,我们定义了一类热冷凝物,这些冷凝水编码在给定的可观察到的统计波动,例如量子几何的体积。我们将这些状态应用于小组田间理论的冷凝水宇宙学计划中,以研究从一类自由模型中提取的关系有效的宇宙学动力学,用于同质和各向同性的空间。我们发现弗里德曼方程的正确经典限制在后期,早期反弹并加速了扩张。
Statistical equilibrium configurations are important in the physics of macroscopic systems with a large number of constituent degrees of freedom. They are expected to be crucial also in discrete quantum gravity, where dynamical spacetime should emerge from the collective physics of the underlying quantum gravitational degrees of freedom. However, defining statistical equilibrium in a background independent system is a challenging open issue, mainly due to the absence of absolute notions of time and energy. This is especially so in non-perturbative quantum gravity frameworks that are devoid of usual space and time structures. In this thesis, we investigate aspects of a generalisation of statistical equilibrium, specifically Gibbs states, suitable for background independent systems. We emphasise on an information theoretic characterisation based on the maximum entropy principle. Subsequently, we explore the resultant generalised Gibbs states in a discrete quantum gravitational system composed of many candidate quanta of geometry, utilising their field theoretic formulation of group field theory and various many-body techniques. We construct several concrete examples of quantum gravitational generalised Gibbs states. We further develop inequivalent thermal representations based on entangled, two-mode squeezed, thermofield double vacua, induced by a class of generalised Gibbs states. In these representations, we define a class of thermal condensates which encode statistical fluctuations in a given observable, e.g. volume of the quantum geometry. We apply these states in the condensate cosmology programme of group field theory to study a relational effective cosmological dynamics extracted from a class of free models, for homogeneous and isotropic spacetimes. We find the correct classical limit of Friedmann equations at late times, with a bounce and accelerated expansion at early times.