论文标题
连续整数的Zeckendorf分区中的汇总数量差异
Difference in the Number of Summands in the Zeckendorf Partitions of Consecutive Integers
论文作者
论文摘要
Zeckendorf证明,每个正整数都具有独特的分区,作为非连续的斐波那契数。我们研究了两个连续整数的分区中汇总数量之间的差异。特别是,令$ l(n)$为$ n $的分区中的汇总数。我们表征了所有正整数,以便$ l(n)> l(n+1)$,$ l(n)<l(n+1)$和$ l(n)= l(n+1)$。此外,如果$ l(n)<l(n+1)> l(n+2)$,我们称$ n+1 $ A峰为$ l $,而$ l $ l $ l(n)> l(n)> l(n+1)<(n+1)<(n+2)$。我们表征了$ l $的所有这些峰值和分离。
Zeckendorf proved that every positive integer has a unique partition as a sum of non-consecutive Fibonacci numbers. We study the difference between the number of summands in the partition of two consecutive integers. In particular, let $L(n)$ be the number of summands in the partition of $n$. We characterize all positive integers such that $L(n) > L(n+1)$, $L(n) < L(n+1)$, and $L(n) = L(n+1)$. Furthermore, we call $n+1$ a peak of $L$ if $L(n) < L(n+1) > L(n+2)$ and a divot of $L$ if $L(n) > L(n+1) < L(n+2)$. We characterize all such peaks and divots of $L$.