论文标题

最小模型结构分析用于联合学习中的输入重建

Minimal Model Structure Analysis for Input Reconstruction in Federated Learning

论文作者

Qian, Jia, Nassar, Hiba, Hansen, Lars Kai

论文摘要

\ ac {fl}提出了一个分布式\ ac {ml}框架,其中每个分布式工人都拥有全局模型及其自己的数据的完整副本。培训是在当地进行的,这不能确保培训数据的直接传输。但是,最近的工作\ citep {Zhu2019deep}表明,来自神经网络的输入数据只能使用该网络梯度的知识来重建,这完全违反了\ ac {fl}的承诺并破坏了用户隐私。 在这项工作中,我们旨在进一步探讨重建,加速和稳定重建程序的理论限制。我们表明,无论网络深度如何,都可以使用一个带有一个隐藏节点的完全连接的神经网络来重建单个输入。然后,我们将此结果概括为平均的梯度,而不是$ b $的批次。在这种情况下,如果隐藏单元的数量超过$ b $,则可以重建完整的批次。对于A \ ac {CNN},卷积层中所需的内核的数量由多种因素(例如填充,内核和步幅大小等)决定。我们需要核心数量$ h \ geq(\ frac {d} {d} {d^{d^{\ prime}}} $ dc $ define $ define $ define $ d p.卷积层之后的宽度和$ c $作为输入的通道号。我们验证了我们的观察结果并证明了使用生物医学(fMRI,\ ac {WBC})和基准数据(Mnist,Mnist,Kuzushiji-Mnist,Cifar100,Imagenet和Face Images)的改进。

\ac{fl} proposed a distributed \ac{ml} framework where every distributed worker owns a complete copy of global model and their own data. The training is occurred locally, which assures no direct transmission of training data. However, the recent work \citep{zhu2019deep} demonstrated that input data from a neural network may be reconstructed only using knowledge of gradients of that network, which completely breached the promise of \ac{fl} and sabotaged the user privacy. In this work, we aim to further explore the theoretical limits of reconstruction, speedup and stabilize the reconstruction procedure. We show that a single input may be reconstructed with the analytical form, regardless of network depth using a fully-connected neural network with one hidden node. Then we generalize this result to a gradient averaged over batches of size $B$. In this case, the full batch can be reconstructed if the number of hidden units exceeds $B$. For a \ac{cnn}, the number of required kernels in convolutional layers is decided by multiple factors, e.g., padding, kernel and stride size, etc. We require the number of kernels $h\geq (\frac{d}{d^{\prime}})^2C$, where we define $d$ as input width, $d^{\prime}$ as output width after convolutional layer, and $C$ as channel number of input. We validate our observation and demonstrate the improvements using bio-medical (fMRI, \ac{wbc}) and benchmark data (MNIST, Kuzushiji-MNIST, CIFAR100, ImageNet and face images).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源