论文标题

倾斜:在被困的离子线性塔普量子计算体系结构上实现更高的保真度

TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture

论文作者

Wu, Xin-Chuan, Debroy, Dripto M., Ding, Yongshan, Baker, Jonathan M., Alexeev, Yuri, Brown, Kenneth R., Chong, Frederic T.

论文摘要

被困的量子位是实用量子计算的领先技术。在这项工作中,我们介绍了针对被困离子的线性磁带架构的架构分析。为了实现我们的研究,我们为此体系结构开发和评估映射和调度算法。 特别是,我们介绍了带有多动物控制“头”的线性“图灵机式”架构的倾斜,其中线性离子链在激光头下方来回移动。我们发现,与可比大小的量子电荷耦合设备(QCCD)架构相比,倾斜可以大大减少通信。我们还为倾斜度开发了两个重要的安排启发式方法。第一个启发式方法通过将相反方向传播的数据匹配到“相对互换”,从而减少了交换操作的数量,并且还避免了整个头部宽度的最大交换距离,因为最大交换距离使得在一个头部位置上进行多个互换。第二个启发式方法通过将胶带安排到每个运动的最大可执行操作上,从而最大程度地减少了离子链运动。我们从模拟中提供了应用程序性能结果,这表明倾斜度可以在成功率(平均高达4.35倍和1.95倍)方面胜过一系列NISQ应用程序。我们还讨论使用倾斜作为构建块,以扩展现有的可伸缩陷阱离子量子计算建议。

Trapped-ion qubits are a leading technology for practical quantum computing. In this work, we present an architectural analysis of a linear-tape architecture for trapped ions. In order to realize our study, we develop and evaluate mapping and scheduling algorithms for this architecture. In particular, we introduce TILT, a linear "Turing-machine-like" architecture with a multilaser control "head", where a linear chain of ions moves back and forth under the laser head. We find that TILT can substantially reduce communication as compared with comparable-sized Quantum Charge Coupled Device (QCCD) architectures. We also develop two important scheduling heuristics for TILT. The first heuristic reduces the number of swap operations by matching data traveling in opposite directions into an "opposing swap", and also avoids the maximum swap distance across the width of the head, as maximum swap distances make scheduling multiple swaps in one head position difficult. The second heuristic minimizes ion chain motion by scheduling the tape to the position with the maximal executable operations for every movement. We provide application performance results from our simulation, which suggest that TILT can outperform QCCD in a range of NISQ applications in terms of success rate (up to 4.35x and 1.95x on average). We also discuss using TILT as a building block to extend existing scalable trapped-ion quantum computing proposals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源