论文标题
非本地非亚伯仪表理论:保形不变性和$β$功能
Non-local Non-Abelian Gauge Theory: Conformal Invariance and $β$-function
论文作者
论文摘要
本文着重于扩展我们先前对涉及无限衍生物(N)案例无限衍生物的Abelian U(1)规格理论的讨论。计算SU(n)量规耦合的重新归一化组方程(RGE),并证明是在非本地理论$β$ function中重现非本地尺度M $ \ rightarrow \ infty $的极限。有趣的是,量规耦合停止了其超越规模$ m $的运行,从而接近了渐近的保形理论。
This paper focuses on extending our previous discussion of an Abelian U(1) gauge theory involving infinite derivatives to a non-Abelian SU(N) case. The renormalization group equation (RGEs) of the SU(N) gauge coupling is calculated and shown to reproduce the local theory $β$-function in the limit of the non-local scale M $\rightarrow \infty$. Interestingly, the gauge coupling stops its running beyond the scale $M$, approaching an asymptotically conformal theory.