论文标题

通过联合学习的培训语音识别模型:质量/成本框架

Training Speech Recognition Models with Federated Learning: A Quality/Cost Framework

论文作者

Guliani, Dhruv, Beaufays, Francoise, Motta, Giovanni

论文摘要

我们建议使用联合学习(分散的设备学习范式)来培训语音识别模型。通过以每个用户的方式进行培训时期,联邦学习必须征收处理非IID数据分布的成本,这些数据分布有望对受过训练的模型的质量产生负面影响。我们提出了一个框架,可以通过这种框架来改变非IID的程度,因此说明了模型质量与联合培训的计算成本之间的权衡,我们通过新颖的指标捕获了模型质量。最后,我们证明了高参数优化和适当使用变异噪声足以补偿非IID分布的质量影响,同时降低了成本。

We propose using federated learning, a decentralized on-device learning paradigm, to train speech recognition models. By performing epochs of training on a per-user basis, federated learning must incur the cost of dealing with non-IID data distributions, which are expected to negatively affect the quality of the trained model. We propose a framework by which the degree of non-IID-ness can be varied, consequently illustrating a trade-off between model quality and the computational cost of federated training, which we capture through a novel metric. Finally, we demonstrate that hyper-parameter optimization and appropriate use of variational noise are sufficient to compensate for the quality impact of non-IID distributions, while decreasing the cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源