论文标题
使用深卷积网络从延迟增强心脏MRI进行的自动心肌梗塞评估
Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI using Deep Convolutional Networks
论文作者
论文摘要
在本文中,我们提出了一个新的深度学习框架,以从临床信息和延迟增强MRI(DE-MRI)进行自动心肌梗死评估。提出的框架解决了两个任务。第一个任务是从短轴DE-MRI系列中自动检测心肌轮廓,梗塞区域,无回流区域和左心室腔。它采用两个分割神经网络。第一个网络用于分割解剖结构,例如心肌和左心室腔。第二个网络用于分割病理区域,例如心肌梗塞,心肌无流动和正常的心肌区域。第一个网络的分段心肌区域进一步用于完善第二网络的病理分割结果。第二个任务是将给定病例自动分类为有或没有DEMRI的临床信息的正常或病理。使用级联支持向量机(SVM)从其相关临床信息中对给定病例进行分类。 DE-MRI的分割病理区域也用于分类任务。我们在2020年EMIDEC MICCAI挑战数据集上评估了我们的方法。左心室腔和心肌的平均骰子指数分别为0.93和0.84。仅使用临床信息的分类在五倍的交叉验证中产生了80%的精度。使用DE-MRI,我们的方法可以以93.3%的精度对案例进行分类。这些实验结果表明,所提出的方法可以自动评估心肌梗塞。
In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented myocardium region from the first network is further used to refine the second network's pathological segmentation results. The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI. A cascaded support vector machine (SVM) is employed to classify a given case from its associated clinical information. The segmented pathological areas from DE-MRI are also used for the classification task. We evaluated our method on the 2020 EMIDEC MICCAI challenge dataset. It yielded an average Dice index of 0.93 and 0.84, respectively, for the left ventricular cavity and the myocardium. The classification from using only clinical information yielded 80% accuracy over five-fold cross-validation. Using the DE-MRI, our method can classify the cases with 93.3% accuracy. These experimental results reveal that the proposed method can automatically evaluate the myocardial infarction.