论文标题
基于学习视觉的反应性政策避免障碍
Learning Vision-based Reactive Policies for Obstacle Avoidance
论文作者
论文摘要
在本文中,我们解决了机器人操纵器的基于视力的避免障碍的问题。这个主题对感知和运动产生构成挑战。尽管该领域的大多数工作旨在改善其中一个方面,但我们为解决此问题提供了一个统一的框架。该框架的主要目标是通过识别视觉输入和相应运动表示之间的关系来连接感知和运动。为此,我们提出了一种学习反应障碍策略的方法。我们评估了单个和多个障碍场景的目标任务的方法。我们展示了所提出的方法以高成功率有效学习稳定的避免障碍策略的能力,同时保持关键应用所需的闭环响应能力,例如人类机器人相互作用。
In this paper, we address the problem of vision-based obstacle avoidance for robotic manipulators. This topic poses challenges for both perception and motion generation. While most work in the field aims at improving one of those aspects, we provide a unified framework for approaching this problem. The main goal of this framework is to connect perception and motion by identifying the relationship between the visual input and the corresponding motion representation. To this end, we propose a method for learning reactive obstacle avoidance policies. We evaluate our method on goal-reaching tasks for single and multiple obstacles scenarios. We show the ability of the proposed method to efficiently learn stable obstacle avoidance strategies at a high success rate, while maintaining closed-loop responsiveness required for critical applications like human-robot interaction.