论文标题

单身有好处。实例中毒以欺骗恶意软件分类器

Being Single Has Benefits. Instance Poisoning to Deceive Malware Classifiers

论文作者

Shapira, Tzvika, Berend, David, Rosenberg, Ishai, Liu, Yang, Shabtai, Asaf, Elovici, Yuval

论文摘要

基于机器学习的恶意软件分类器的性能取决于用于诱导其模型的大型和更新的培训集。为了保持最新的培训集,有必要从广泛的来源收集良性和恶意文件,为攻击者提供可利用的目标。在这项研究中,我们展示了攻击者如何发起针对用于训练恶意软件分类器的数据集的复杂而有效的中毒攻击。攻击者的最终目标是确保被中毒数据集引起的模型将无法检测到攻击者的恶意软件,但能够检测到其他恶意软件。与恶意软件检测域中的其他中毒攻击相反,我们的攻击不集中于恶意软件系列,而是针对包含植入触发因素的特定恶意软件实例,将检测率从99.23%降低到0%,具体取决于中毒的量。我们使用Virustotal的最先进的分类器和恶意软件样本来评估对Ember数据集的攻击,以端到端验证我们的工作。我们提出了一种全面的检测方法,该方法可以作为对这种新发现的严重威胁的未来精致防御。

The performance of a machine learning-based malware classifier depends on the large and updated training set used to induce its model. In order to maintain an up-to-date training set, there is a need to continuously collect benign and malicious files from a wide range of sources, providing an exploitable target to attackers. In this study, we show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier. The attacker's ultimate goal is to ensure that the model induced by the poisoned dataset will be unable to detect the attacker's malware yet capable of detecting other malware. As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger, reducing the detection rate from 99.23% to 0% depending on the amount of poisoning. We evaluate our attack on the EMBER dataset with a state-of-the-art classifier and malware samples from VirusTotal for end-to-end validation of our work. We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源