论文标题
双曲线图嵌入具有增强的半图形变异推理的嵌入
Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference
论文作者
论文摘要
由于数据中复杂的依赖关系,在物理,社会和信息科学中产生的关系数据的有效建模具有挑战性。在这项工作中,我们建立了半幅图形图形自动编码器,以捕获低维图中的高阶统计数据。我们通过嵌入的繁殖性嵌入在潜在空间中的双曲几何形状,以有效地表示表现出层次结构的图。为了解决经典变异推理中天真的后部潜在分布假设,我们使用半平尺层次变异贝叶斯隐式捕获给定图形数据的后代,这些后图数据可能表现出沉重的尾巴,多种模式,偏斜性和高度相关的潜在结构。我们表明,现有的半图形变异推理目标证明可以减少观察到的图中的信息。基于此观察结果,我们估计并在半图表变异推理学习目标中估算并添加了附加的共同信息项,以捕获输入和潜在空间之间产生的丰富相关性。我们表明,将这个正规化术语与繁殖嵌入的结合在一起,可以提高学识渊博的高级表示的质量,并使更灵活,更忠实的图形建模。我们在实验上证明,我们的方法在欧几里得和双曲线空间中的现有图形自动编码器都优于现有的图形自动编码器,用于边缘链路预测和节点分类。
Efficient modeling of relational data arising in physical, social, and information sciences is challenging due to complicated dependencies within the data. In this work, we build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation. We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure. To address the naive posterior latent distribution assumptions in classical variational inference, we use semi-implicit hierarchical variational Bayes to implicitly capture posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and highly correlated latent structures. We show that the existing semi-implicit variational inference objective provably reduces information in the observed graph. Based on this observation, we estimate and add an additional mutual information term to the semi-implicit variational inference learning objective to capture rich correlations arising between the input and latent spaces. We show that the inclusion of this regularization term in conjunction with the Poincare embedding boosts the quality of learned high-level representations and enables more flexible and faithful graphical modeling. We experimentally demonstrate that our approach outperforms existing graph variational auto-encoders both in Euclidean and in hyperbolic spaces for edge link prediction and node classification.