论文标题

在易感暴露感染的(SEIR)模型中,流行曲线的近似通用形状

The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model

论文作者

Heng, Kevin, Althaus, Christian L.

论文摘要

隔室传输模型已成为研究传染病动力学的宝贵工具。已知易感性感染的(SIR)模型具有精确的半分析溶液。在当前的研究中,Harko等人的方法。 (2014年)被概括以获得易感暴露感染的(SEIR)模型的近似半分析解。 SEIR模型曲线的形状与SIR曲线几乎相同,但是随着时间的时间延伸与它们相关的伸展因子,这与孵化与感染周期的比率相关。这一发现意味着一个近似特征的时间尺度,按这个拉伸因子缩放,这对于所有SEIR模型都是普遍的,这仅取决于传染性的基本繁殖数和人群的初始分数。

Compartmental transmission models have become an invaluable tool to study the dynamics of infectious diseases. The Susceptible-Infectious-Recovered (SIR) model is known to have an exact semi-analytical solution. In the current study, the approach of Harko et al. (2014) is generalised to obtain an approximate semi-analytical solution of the Susceptible-Exposed-Infectious-Recovered (SEIR) model. The SEIR model curves have nearly the same shapes as the SIR ones, but with a stretch factor applied to them across time that is related to the ratio of the incubation to infectious periods. This finding implies an approximate characteristic timescale, scaled by this stretch factor, that is universal to all SEIR models, which only depends on the basic reproduction number and initial fraction of the population that is infectious.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源