论文标题
通过通过最佳解决方案区分操纵器轨迹快速适应任务扰动
Fast Adaptation of Manipulator Trajectories to Task Perturbation By Differentiating through the Optimal Solution
论文作者
论文摘要
在最终效应器任务约束下,关节空间轨迹优化导致了一个具有挑战性的非凸问题。因此,先前计算的轨迹对任务限制的扰动的实时适应通常变得棘手。现有作品使用所谓的轨迹优化的温暖启动来提高计算性能。我们提出了一种从根本上不同的方法,该方法依赖于在任务约束参数方面得出最佳解决方案的分析梯度。该梯度图表征了先前计算的关节轨迹需要变形以符合新任务约束的方向。随后,我们开发了一种迭代线路搜索算法,用于计算变形规模。我们的算法为各种任务扰动提供了近乎实时的联合轨迹适应,例如(i)最终效果限制的轨迹的初始和最终联合配置的变化以及(ii)最终效果效果方向方向约束下的最终效力目标或方向的变化。我们将这些示例中的每一个都与现实世界的应用联系起来,从从演示到避免障碍物的学习等等。我们还表明,我们的算法产生的轨迹具有类似于通过从头开始使用温暖启动初始化来求解轨迹优化的轨迹。但最重要的是,我们的算法在后一种方法上实现了160倍的最差速度。
Joint space trajectory optimization under end-effector task constraints leads to a challenging non-convex problem. Thus, a real-time adaptation of prior computed trajectories to perturbation in task constraints often becomes intractable. Existing works use the so-called warm-starting of trajectory optimization to improve computational performance. We present a fundamentally different approach that relies on deriving analytical gradients of the optimal solution with respect to the task constraint parameters. This gradient map characterizes the direction in which the prior computed joint trajectories need to be deformed to comply with the new task constraints. Subsequently, we develop an iterative line-search algorithm for computing the scale of deformation. Our algorithm provides near real-time adaptation of joint trajectories for a diverse class of task perturbations such as (i) changes in initial and final joint configurations of end-effector orientation-constrained trajectories and (ii) changes in end-effector goal or way-points under end-effector orientation constraints. We relate each of these examples to real-world applications ranging from learning from demonstration to obstacle avoidance. We also show that our algorithm produces trajectories with quality similar to what one would obtain by solving the trajectory optimization from scratch with warm-start initialization. But most importantly, our algorithm achieves a worst-case speed-up of 160x over the latter approach.